1. ShardingJDBC的集成配置
POM依赖配置
<dependencies> <!--lombok--> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <scope>provided</scope> </dependency> <!-- spring boot 依赖 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- sharding-jdbc 依赖 --> <dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-jdbc-core</artifactId> <version>${sharding.jdbc.version}</version> </dependency> <!-- sharding-jdbc 服务编排依赖 --> <dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-jdbc-orchestration</artifactId> <version>${sharding.jdbc.version}</version> </dependency> <!-- mysql-connector-java --> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>${mysql.version}</version> </dependency> <!-- druid 数据库连接池 --> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring-boot-starter</artifactId> <version>${druid.version}</version> </dependency> <!-- Spring data jpa 依赖 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency></dependencies>
数据源配置
server: port: 10692spring: application: name: dynamic-database # 第一个数据源配置, 采纳Druid datasource: tradesystem: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: com.mysql.cj.jdbc.Driver username: root password: 654321 url: jdbc:mysql://10.10.20.130:3306/smooth?useUnicode=true&characterEncoding=UTF-8&useSSL=false&serverTimezone=UTC druid: # 连接池的配置信息 # 初始化大小,最小,最大 initial-size: 5 min-idle: 5 maxActive: 20 # 配置获取连贯期待超时的工夫 maxWait: 60000 # 配置距离多久才进行一次检测,检测须要敞开的闲暇连贯,单位是毫秒 timeBetweenEvictionRunsMillis: 60000 # 配置一个连贯在池中最小生存的工夫,单位是毫秒 minEvictableIdleTimeMillis: 300000 validationQuery: SELECT 1 testWhileIdle: true testOnBorrow: false testOnReturn: false # 关上PSCache,并且指定每个连贯上PSCache的大小 poolPreparedStatements: true maxPoolPreparedStatementPerConnectionSize: 20 # 配置监控统计拦挡的filters,去掉后监控界面sql无奈统计,'wall'用于防火墙 filters: stat,wall,log4j # 通过connectProperties属性来关上mergeSql性能;慢SQL记录 #connectionProperties: druid.stat.mergeSql\=true;druid.stat.slowSqlMillis\=5000
ShardingJDBC代码配置
分库配置规定:
/** * 分库配置规定 */public class ShardingDataSourceRule implements PreciseShardingAlgorithm<Long> { /** * 分片规定, 取模运算 */ public static int MOD = 1; /** * 依据账户ID做分库解决 * @param names * @param value * @return */ @Override public String doSharding(Collection<String> names, PreciseShardingValue<Long> preciseShardingValue) { Long accountNo = preciseShardingValue.getValue(); String dataSource = DatasourceEnum.DATASOURCE_PREFIX.getValue() + accountNo % MOD; return dataSource; }}
这里假如依据账户ID来做分库解决, 依据账户ID取模计算分库信息。
分表配置规定:/** * 表分片规定 */ public class ShardingTableRule implements PreciseShardingAlgorithm<Long> { @Override public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) { // 不做分表处理, 间接返回表名 return preciseShardingValue.getLogicTableName(); } }
如有须要, 能够在这里设置分表配置规定,因为是做数据库的平滑扩容, 只有实现分库即可, 这里就不做分表的配置, 采纳默认表名即可。
分片规定的集成配置:
/** * 分片规定的集成配置 */private TableRuleConfiguration orderRuleConfig(){ //订单表, 多个分片示例: "DB_${1..3}.t_order_${1..3}" ds_0.t_trade_order DynamicShardingService.SHARDING_RULE_DATASOURCE = DatasourceEnum.DATASOURCE_1.getValue(); String actualDataNodes = DatasourceEnum.DATASOURCE_1.getValue() + "." + DatasourceEnum.TABLE_ORDER.getValue() ; TableRuleConfiguration tableRuleConfig = new TableRuleConfiguration(DatasourceEnum.TABLE_ORDER.getValue(), actualDataNodes); //设置分表策略 tableRuleConfig.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("accountNo", new ShardingDataSourceRule())); tableRuleConfig.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("accountNo",new ShardingTableRule())); // 记录订单表的分片规定, 便于后续编排治理 DynamicShardingService.SHARDING_RULE_TABLE_ORDER = actualDataNodes; return tableRuleConfig;}/** * 数据源Sharding JDBC配置 * @return */@Bean(name = "tradeSystemDataSource")@Primary@DependsOn("tradeDruidDataSource")public DataSource tradeSystemDataSource(@Autowired DruidDataSource tradeDruidDataSource) throws Exception{ ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration(); shardJdbcConfig.getTableRuleConfigs().add(orderRuleConfig()); ...}
在orderRuleConfig办法外面配置分片规定,在tradeSystemDataSource办法外面退出分片规定配置。
2.服务编排性能(自定义注册核心)
2.0.0.M1版本开始,Sharding-JDBC提供了数据库治理编排性能,次要包含:
- 配置集中化与动态化,可反对数据源、表与分片及读写拆散策略的动静切换
- 数据治理。提供熔断数据库拜访程序对数据库的拜访和禁用从库的拜访的能力
- 反对Zookeeper和Etcd的注册核心
这里要实现动静数据源的切换, 须要退出编排性能。
本地注册核心的实现类,LocalRegistryCenter要害代码:
public class LocalRegistryCenter implements RegistryCenter { /** * 注册事件监听缓存记录 */ public static Map<String, DataChangedEventListener> listeners = new ConcurrentHashMap<>(); private RegistryCenterConfiguration config; private Properties properties; /** * 记录Sharding节点配置信息 */ public static Map<String, String> values = new ConcurrentHashMap<>(); ... @Override public void watch(String key, DataChangedEventListener dataChangedEventListener) { if (null != dataChangedEventListener) { // 将Sharding事件监听器缓存下来 listeners.put(key, dataChangedEventListener); } } ... @Override public String getType() { // 标识本地注册核心的注入名称 return "localRegisterCenter"; } ... }
通过SPI机制, 主动注入, 创立配置文件:
org.apache.shardingsphere.orchestration.reg.api.RegistryCenter内容指向方才创立的配置类:
com.itcast.database.smooth.config.LocalRegistryCenter
最初在数据源配置外面退出配置类:
public DataSource tradeSystemDataSource(@Autowired DruidDataSource tradeDruidDataSource) throws Exception{ ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration(); shardJdbcConfig.getTableRuleConfigs().add(orderRuleConfig()); shardJdbcConfig.setDefaultDataSourceName(DatasourceEnum.DATASOURCE_1.getValue()); Properties props = new Properties(); //打印sql语句,生产环境敞开缩小日志量 props.setProperty("sql.show",Boolean.TRUE.toString()); Map<String,DataSource> dataSourceMap = new LinkedHashMap<>() ; dataSourceMap.put(DatasourceEnum.DATASOURCE_1.getValue(),tradeDruidDataSource) ; // 服务编排配置, 退出本地注册核心配置类 OrchestrationConfiguration orchestrationConfig = new OrchestrationConfiguration( DYNAMIC_SHARDING, new RegistryCenterConfiguration("localRegisterCenter"), false); return OrchestrationShardingDataSourceFactory.createDataSource(dataSourceMap, shardJdbcConfig, props, orchestrationConfig);}
3. 动静切换实现(预约义形式)
在配置文件减少第二个数据源:
... # 减少第二个数据源配置 tradesystem2: type: com.alibaba.druid.pool.DruidDataSource driver-class-name: com.mysql.cj.jdbc.Driver username: root password: 654321 url: jdbc:mysql://10.10.20.126:3306/smooth?useUnicode=true&characterEncoding=UTF-8&useSSL=false&serverTimezone=UTC druid: # 连接池的配置信息 # 初始化大小,最小,最大 initial-size: 5 min-idle: 5 maxActive: 20 # 配置获取连贯期待超时的工夫 maxWait: 60000 # 配置距离多久才进行一次检测,检测须要敞开的闲暇连贯,单位是毫秒 timeBetweenEvictionRunsMillis: 60000 # 配置一个连贯在池中最小生存的工夫,单位是毫秒 minEvictableIdleTimeMillis: 300000 validationQuery: SELECT 1 testWhileIdle: true testOnBorrow: false testOnReturn: false # 关上PSCache,并且指定每个连贯上PSCache的大小 poolPreparedStatements: true maxPoolPreparedStatementPerConnectionSize: 20 # 配置监控统计拦挡的filters,去掉后监控界面sql无奈统计,'wall'用于防火墙 filters: stat,wall,log4j # 通过connectProperties属性来关上mergeSql性能;慢SQL记录 #connectionProperties: druid.stat.mergeSql\=true;druid.stat.slowSqlMillis\=5000
代码配置:
减少第二个数据源配置的配置, 退出MAP中:
sharding分片规定配置:
这里会通过接口来调用, 实现Sharding数据源的动静切换:
/** * 替换sharding里的分片规定 */public void replaceActualDataNodes(String newRule){ // 获取已有的配置 String rules = LocalRegistryCenter.values .get("/" + DruidSystemDataSourceConfiguration.DYNAMIC_SHARDING + "/config/schema/logic_db/rule"); // 批改为新的分片规定 String rule = rules.replace(SHARDING_RULE_TABLE_ORDER, newRule); LocalRegistryCenter.listeners.get("/" + DruidSystemDataSourceConfiguration.DYNAMIC_SHARDING + "/config/schema") .onChange(new DataChangedEvent( "/" + DruidSystemDataSourceConfiguration.DYNAMIC_SHARDING + "/config/schema/logic_db/rule", rule, DataChangedEvent.ChangedType.UPDATED)); LocalRegistryCenter.values.put("/" + DruidSystemDataSourceConfiguration.DYNAMIC_SHARDING + "/config/schema/logic_db/rule",rule); SHARDING_RULE_TABLE_ORDER = newRule;}
依据传递的取模参数进行调用批改,如果mod为2代表要分两个库:
- 创立两个数据库及对应表构造
启动服务测试验证
拜访接口地址, 服务启动默认只有一个数据源失效, 所有数据都会落在一台数据库节点。
动静调整让第二个数据源失效, 扩容为2个数据源:
从后盾日志能够看到Sharding分片规定已失效:这样数据, 就会依据取模规定, 落至不同的数据源节点。
4. 动静切换实现(动静增加形式)
在理论利用当中,可能并不能事后晓得所要扩容的机器节点信息, 这时候就须要实现动静增加的形式。
- 删除原来的预约义数据源配置, 只加载一个数据源即可。
批改动静分片的实现:
DynamicShardingService:public void dynamicSharding(int mod) { ShardingDataSourceRule.MOD = mod; String newRule = DatasourceEnum.DATASOURCE_PREFIX.getValue() + "${0.." + (mod - 1) + "}"; if(mod == 1) { ... }else { // 动静数据源配置实现扩容 Properties properties = loadPropertiesFile("dynamic_datasource.properties"); try { log.info("load datasource config url: " + properties.get("url")); DruidDataSource druidDataSource = (DruidDataSource) DruidDataSourceFactory.createDataSource(properties); druidDataSource.setRemoveAbandoned(true); druidDataSource.setRemoveAbandonedTimeout(600); druidDataSource.setLogAbandoned(true); // 设置数据源谬误重连工夫 druidDataSource.setTimeBetweenConnectErrorMillis(60000); druidDataSource.init(); OrchestrationShardingDataSource dataSource = SpringContextUtil.getBean("tradeSystemDataSource", OrchestrationShardingDataSource.class); Map<String, DataSource> dataSourceMap = dataSource.getDataSource().getDataSourceMap(); dataSourceMap.put(DatasourceEnum.DATASOURCE_2.getValue(), druidDataSource); Map<String, DataSourceConfiguration> dataSourceConfigMap = new HashMap<String, DataSourceConfiguration>(); for(String key : dataSourceMap.keySet()) { dataSourceConfigMap.put(key, DataSourceConfiguration.getDataSourceConfiguration(dataSourceMap.get(key))); } String result = SHARDING_RULE_TABLE_ORDER.replace(SHARDING_RULE_DATASOURCE, newRule); replaceActualDataNodes(result); SHARDING_RULE_DATASOURCE = newRule; // 从新数据源配置 dataSource.renew(new DataSourceChangedEvent( "/" + DruidSystemDataSourceConfiguration.DYNAMIC_SHARDING + "/config/schema/logic_db/datasource", dataSourceConfigMap)); return; } catch (Exception e) { log.error(e.getMessage(), e); } } String result = SHARDING_RULE_TABLE_ORDER.replace(SHARDING_RULE_DATASOURCE, newRule); replaceActualDataNodes(result); SHARDING_RULE_DATASOURCE = newRule; }
如果取模分片大于1, 走扩容解决逻辑, 在这里能够将扩容数据源信息写至配置文件内(也能够从配置核心读取),而后动态创建数据源, 重写Sharding的编排配置OrchestrationShardingDataSource。
扩容的数据源配置文件放至资源目录下:
dynamic_datasource.properties
driverClassName=com.mysql.cj.jdbc.Driverusername=rootpassword=654321url=jdbc:mysql://10.10.20.131:3306/smooth?useUnicode=true&characterEncoding=UTF-8&useSSL=false&serverTimezone=UTCinitialSize=5minIdle=5maxActive=20maxWait=60000timeBetweenEvictionRunsMillis=60000minEvictableIdleTimeMillis=300000validationQuery=SELECT 1testWhileIdle=truetestOnBorrow=falsetestOnReturn=false
- 测试验证
参照下面的形式进行测试验证,这样就能够在不须要重启服务的状况下, 任意增加数据源节点。
5. ShardingJDBC应用注意事项
Sharding JDBC, Mycat, Drds 等产品都是分布式数据库中间件, 相比间接的数据源操作, 会存在一些限度, Sharding JDBC在应用时, 须要留神以下问题, 防止采坑:
- 无限反对子查问
- 不反对HAVING
- 不反对OR,UNION 和 UNION ALL
- 不反对非凡INSERT
- 每条INSERT语句只能插入一条数据,不反对VALUES后有多行数据的语句
- 不反对DISTINCT聚合
- 不反对dual虚构表查问
- 不反对SELECT LAST_INSERT_ID(), 不反对自增序列
- 不反对CASE WHEN
- *
本文由mirson创作分享,如需进一步交换,请加QQ群:19310171或拜访www.softart.cn
- *