自制nio
通过上篇socke根底,咱们回顾了下socket的用法。上篇内容很简略,服务端也只是接管了一个客户端的连贯,接下来咱们就降级下咱们的demo,使其像一个真正的服务器。
首先咱们容许服务端接管多个客户端的连贯。批改OioServer
如下
代码2-1
public class OioServer { private ServerSocket serverSocket; public void start() { Socket socket = null; try { openServer(8081); if (Objects.isNull(serverSocket)) { return; } while (true) { socket = listenAccept(); handleSocket(socket); } } catch (Exception e) { e.printStackTrace(); SocketUtils.closeServerSocketSafely(serverSocket); SocketUtils.closeSocketSafely(socket); } } private void handleSocket(Socket socket) { new Thread(() -> { while (!socket.isClosed()) { String msg = SocketUtils.read(socket); SocketUtils.write(socket, " I get you" + msg); } }).start(); } public void openServer(int port) throws IOException { // 1 创立ServerSocket serverSocket = new ServerSocket(); // 2 绑定端口 SocketAddress socketAddress = new InetSocketAddress(port); serverSocket.bind(socketAddress); // 3 accept客户端 } public Socket listenAccept() throws IOException { return serverSocket.accept(); }}
当调用start()办法后,咱们服务器就开始监听8081接口了。而后每次一个客户端连贯进来,咱们就会失去一个socket,而后咱们创立一个线程去解决这个socket。
为什么要创立新的线程?因为socket读写都是阻塞的,如果不启动新线程,那主线程就会被阻塞。这个时候,有新的客户端连贯进来将不会被解决。然而,咱们为每个socket创立一个线程,这样是有代价的,并且咱们服务器是不可能创立无数个线程的。固咱们应用为每个socket创立一个线程这种办法在高并发的状况下显然是不可行的。那么有什么办法改良吗?答案是必定的。当初java有了nio,然而我当初不急于把这个王炸展现进去,让咱们一步步凑近它,并揭开它的神秘面纱。
当初咱们晓得了为每个socket创立一个线程是因为,socket的操作(读或写)是阻塞的,那咱们不让它阻塞不就能够了?有方法吗?有。对于读,咱们能够应用inputStream.available()
;来判断一下,是否可读,不可读咱们就不调用阻塞办法 inputStream.read(bytes)
。于是咱们再SocketUtils
中天加一个办法
代码2-2
/** * 从socket中读数据*/public static ReadResult readWithNoBlocking(Socket socket) { try { InputStream inputStream = socket.getInputStream(); byte[] bytes = new byte[1024]; int len; StringBuilder sb = new StringBuilder(); if (inputStream.available() <= 0) { return ReadResult.unReadableResult(); } while ((len = inputStream.read(bytes)) != -1) { sb.append(new String(bytes, 0, len, "UTF-8")); if (inputStream.available() <= 0) { return ReadResult.readableResult(sb.toString()); } } return ReadResult.readableResult(sb.toString()); } catch (IOException e) { e.printStackTrace(); return ReadResult.unReadableResult(); }}
而后批改OioServer,
代码2-4
public class OioServer { private ServerSocket serverSocket; private volatile List<Socket> socketList = new ArrayList<>(); ... public void start() { Socket socket = null; try { openServer(8081); // 开启解决socket连贯的线程 startChildHandler(); // 主线程监听连贯 while (true) { Socket socket = listenAccept(); handleSocket(socket); } } catch (Exception e) { e.printStackTrace(); SocketUtils.closeServerSocketSafely(serverSocket); SocketUtils.closeSocketSafely(socket); } } // 增加socket到socketList中 private void handleSocket(Socket socket) { socketList.add(socket); } // 解决所有socket private void startChildHandler() { new Thread(() -> { while (true) { for (Socket socketToDeal : socketList) { ReadResult readResult = SocketUtils.readWithNoBlocking(socketToDeal); if (readResult.readable()) { System.out.println("收到客户端音讯" + socketToDeal.getInetAddress().toString() + " " + readResult.result()); SocketUtils.write(socketToDeal, "Get u:" + readResult.result()); } } try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); }
首先咱们批改了handleSocket办法,是新建的socket增加到socketList中,因为咱们有了SocketUtils.readWithNoBlocking
办法,读操作再也不会阻塞住线程了,这样咱们就能够在循环中一直保持所有的socket是否有音讯发过来,并解决。
尽管上述代码健壮性有待考据,然而咱们的确失去了一个只有一个线程就能够解决所有socket的服务器模型。也能够说,这是简易版的nio服务器。
更加通用化
当初咱们曾经有一个nio 的server了,然而,齐全是没有章法的编写的,如果要减少性能,或者定制化一些货色,那必须要批改OioServer
,这违反了开闭准则。因而咱们须要提取一些通用逻辑,将逻辑的解决交给应用方,上面是以可读为例。
代码2-5
public class NioServer { private ServerSocket serverSocket; private volatile List<SocketContext> socketList = new ArrayList<>(); private volatile List<SocketContext> statusChangedContext = new ArrayList<>(); public void start(int port) { // 监听端口线程 new Thread(() ->{ Socket socket = null; try { openServer(port); startChildHandler(); while (true) { socket = listenAccept(); handleSocket(socket); } } catch (Exception e) { e.printStackTrace(); SocketUtils.closeServerSocketSafely(serverSocket); SocketUtils.closeSocketSafely(socket); } }).start(); } // 监听所有socket private void startChildHandler() { new Thread(() -> { while (true) { for (SocketContext socketToDeal : socketList) { ReadResult readResult = SocketUtils.readWithNoBlocking(socketToDeal.getSocket()); if (readResult.readable()) { // 如果socket可读,将其退出到statusChangedContext中,并唤醒调用线程 socketToDeal.setStatus(SocketContext.STATUS_READABLE); socketToDeal.setMsg(readResult.result()); statusChangedContext.add(socketToDeal); synchronized (statusChangedContext) { statusChangedContext.notifyAll(); } } } try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); } private void handleSocket(Socket socket) { SocketContext socketContext = new SocketContext(); socketContext.setSocket(socket); socketList.add(socketContext); } private void openServer(int port) throws IOException { // 1 创立ServerSocket serverSocket = new ServerSocket(); // 2 绑定端口 SocketAddress socketAddress = new InetSocketAddress(port); serverSocket.bind(socketAddress); // 3 accept客户端 } private Socket listenAccept() throws IOException { return serverSocket.accept(); } public List<SocketContext> getStatusChangedContext() { if (statusChangedContext.size() == 0) { try { // 当statusChangedContext为空,也就是没有事件要解决的时候,咱们挂起调用方线程,这样能够节约资源 synchronized (statusChangedContext) { statusChangedContext.wait(); } } catch (InterruptedException e) { e.printStackTrace(); } } return statusChangedContext; } public static class SocketContext { public static final int STATUS_READABLE = 1; private Socket socket; private int status; private String msg; public Socket getSocket() { return socket; } public void setSocket(Socket socket) { this.socket = socket; } public int getStatus() { return status; } public void setStatus(int status) { this.status = status; } public String read() { return msg; } public void setMsg(String msg) { this.msg = msg; } public void write(String msg) { SocketUtils.write(this.socket, msg); } }}
而后咱们就能够这样应用它了
代码2-6
public class NioServerTest { @Test public void test() { NioSocket server = new NioSocket(); server.start(8081); while (true) { Iterator<SocketContext> socketContexts = server.getStatusChangedContext().iterator(); while (socketContexts.hasNext()) { SocketContext context = socketContexts.next(); socketContexts.remove(); if (context.getStatus() == SocketContext.STATUS_READABLE) { // 解决读 System.out.println(context.read()); context.write("Ok"); } } } }}
从代码2-4
到代码2-5
逻辑逾越应该不大,这里解释下2-5
的一些细节.
为了让NioSocket
在后盾继续监听咱们设定的端口,咱们将 socket = listenAccept(); handleSocket(socket);
这两个步骤放入一个独自的线程。每次有客户端接入,便会失去一个新的socket,将这个新的socket退出到socketList
中,而后在startChildHandler
启动的线程中遍历所有socket,并判断其状态扭转(可读)。
为了把业务控制权交于调用方,在本例中也就是NioSocketTest.test
。我定义看一个变量statusChangedContext
,如果有socket可读,则将其包装成SocketContext
退出到statusChangedContext
中取。这样,调用方间接拿到statusChangedContext
去遍历,就能够解决所有的socket的读事件。
当调用方调用getStatusChangedContext()
办法时,如果此时statusChangedContext
为空,则调用线程会被挂起,晓得有可读事件呈现,调用线程被唤醒(statusChangedContext.notifyAll()
)
java nio实现
如果看官老爷读了下面两局部,那么至多对nio的应用曾经有所领悟了。下面咱们自制了一个nio 的socket,尽管只能对read事件作出反应,然而其余的事件,比方,可写、socket断开等事件也是能够依照这个思路去做的。那么咱们就能够无缝切入java nio了。
代码2-7
public class NioServer { private Selector selector; private Selector chiledSelector; public void start(int port) throws IOException { // 通过open()办法找到Selector selector = Selector.open(); chiledSelector = Selector.open(); // 关上服务器套接字通道 ServerSocketChannel ssc = ServerSocketChannel.open(); // 服务器配置为非阻塞 ssc.configureBlocking(false); // 进行服务的绑定 ssc.bind(new InetSocketAddress("localhost", port)); // 注册到selector,期待连贯 SelectionKey selectionKey = ssc.register(selector, 0); selectionKey.interestOps(SelectionKey.OP_ACCEPT); while (!Thread.currentThread().isInterrupted()) { selector.select(); Set<SelectionKey> keys = selector.selectedKeys(); Iterator<SelectionKey> keyIterator = keys.iterator(); while (keyIterator.hasNext()) { SelectionKey key = keyIterator.next(); if (!key.isValid()) { continue; } if (key.isAcceptable()) { SocketChannel clientChannel = ssc.accept(); handleSocket(clientChannel); } keyIterator.remove(); //该事件曾经解决,能够抛弃 } } } public Set<SelectionKey> getStatusChangedContext() throws IOException { chiledSelector.select(); return chiledSelector.selectedKeys(); } private void handleSocket(SocketChannel clientChannel) throws IOException { clientChannel.configureBlocking(false); clientChannel.register(chiledSelector, SelectionKey.OP_READ); System.out.println("a new client connected " + clientChannel.getRemoteAddress()); } public void write(SelectionKey key, String msg) throws IOException, ClosedChannelException { SocketChannel channel = (SocketChannel) key.channel(); System.out.println("write:" + msg); ByteBuffer sendBuffer = ByteBuffer.allocate(1024); sendBuffer.clear(); sendBuffer.put(msg.getBytes()); sendBuffer.flip(); channel.write(sendBuffer); channel.register(chiledSelector, SelectionKey.OP_READ); } public String read(SelectionKey key) throws IOException { SocketChannel socketChannel = (SocketChannel) key.channel(); ByteBuffer readBuffer = ByteBuffer.allocate(1024); readBuffer.clear(); int numRead; try { numRead = socketChannel.read(readBuffer); } catch (IOException e) { key.cancel(); socketChannel.close(); return null; } return new String(readBuffer.array(), 0, numRead); }}
代码2-8
public class NioServerTest { @Test public void test() throws IOException { NioServer server = new NioServer(); server.start(8081); while (true) { Iterator<SelectionKey> socketContexts = server.getStatusChangedContext().iterator(); while (socketContexts.hasNext()) { SelectionKey key = socketContexts.next(); socketContexts.remove(); if ((key.readyOps() & SelectionKey.OP_READ) != 0) { System.out.println(server.read(key)); server.write(key, "Ok"); } } } } }
下面利用java nio写的server跟咱们本人实现的nio写的server成果是一样的。咱们本人创立监听客户端线程,还有解决socket线程的工作,交给了java nio外部(当然不是简略的起了两个线程而已,我只是简化了这个模型)。
在java nio中,socket不在是socket,而是SocketChannel,这里大家临时了解他俩等价吧。而后一个Selector就相当于一个线程,而后咱们将channel与selector通过register
办法关联起来,并指定咱们感兴趣的事。留神:这里跟咱们本人实现的nio有区别,咱们没有提供注册趣味事件,而是默认对可读事件感兴趣。而后咱们调selector.select()办法,同样,这个办法没有事件产生会阻塞。而后失去事件汇合去遍历解决。
大节
这篇文章,咱们通过bio的socket本人通过线程和循环实现了服务端,并有了事件的概念。而后咱们又用Nio的形式去实现了雷同的性能。通过两种形式,咱们很天然的了解了Nio的应用及基本原理,下一章咱们将会更加粗疏的学习Java NIO.