明天借助一个例子持续讲ASH的用法。

客户报告:一个RAC形成的环境,在11:20左右开始解决慢。提供材料:AWR Report ASH 请求事项:起因确认解决办法

先简略看一AWR Report 的总体情况。

・Node1   DB Time:              967.74 (mins)・Node2   DB Time:              414.41 (mins)・Node3   DB Time:              354.11 (mins)・Node4   DB Time:              460.29 (mins)・Node5   DB Time:              551.66 (mins)   

依据以上的信息,能够看到Node1的“DB Time : 967.74 (mins)”,Node2--Node5 的两倍左右。
所以,咱们能够看看每个INSTANCE的“Top 5 Timed Foreground Events”。

・Node1Top 5 Timed Foreground Events~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           Avg                                                          wait   % DBEvent                                 Waits     Time(s)   (ms)   time Wait Class------------------------------ ------------ ----------- ------ ------ ----------db file sequential read           4,893,299      26,714      5   46.0 User I/Olog file sync                       476,854       6,132     13   10.6 CommitDB CPU                                            5,009           8.6Disk file operations I/O            163,640       4,128     25    7.1 User I/Ogc current block 3-way            2,866,969       3,163      1    5.4 Cluster・Node2Top 5 Timed Foreground Events~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           Avg                                                          wait   % DBEvent                                 Waits     Time(s)   (ms)   time Wait Class------------------------------ ------------ ----------- ------ ------ ----------gc cr block busy                    256,891       4,668     18   18.8 ClusterDB CPU                                            4,613          18.6db file sequential read           3,089,328       3,822      1   15.4 User I/Ogc current block 3-way            2,533,718       2,717      1   10.9 Clustergc cr grant 2-way                 2,424,954       1,698      1    6.8 Cluster・Node3Top 5 Timed Foreground Events~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           Avg                                                          wait   % DBEvent                                 Waits     Time(s)   (ms)   time Wait Class------------------------------ ------------ ----------- ------ ------ ----------DB CPU                                            4,368          20.6gc cr block busy                    241,547       4,166     17   19.6 Clusterdb file sequential read           2,272,733       2,652      1   12.5 User I/Ogc current block 3-way            2,123,690       2,157      1   10.2 ClusterDisk file operations I/O            227,537       1,604      7    7.5 User I/O・Node4Top 5 Timed Foreground Events~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           Avg                                                          wait   % DBEvent                                 Waits     Time(s)   (ms)   time Wait Class------------------------------ ------------ ----------- ------ ------ ----------db file sequential read           5,651,562       6,052      1   21.9 User I/ODB CPU                                            5,315          19.2gc cr block busy                    195,097       3,457     18   12.5 Clustergc cr grant 2-way                 4,318,113       2,704      1    9.8 Clustergc current block 3-way            2,451,795       2,571      1    9.3 Cluster・Node5Top 5 Timed Foreground Events~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                           Avg                                                          wait   % DBEvent                                 Waits     Time(s)   (ms)   time Wait Class------------------------------ ------------ ----------- ------ ------ ----------db file sequential read           5,631,340       6,850      1   20.7 User I/ODB CPU                                            5,586          16.9gc cr block busy                    230,530       4,129     18   12.5 Clustergc current block 3-way            3,321,250       3,498      1   10.6 Clustergc cr grant 2-way                 4,412,873       2,792      1    8.4 Cluster

看到这里,因为所有INSTANCE的待机EVENT都和I/O关联,基本上能够判断为是业务解决集中的问题。
上面就须要仔细分析ASH数据,找到能证实论断的货色。

首先,咱们看一下分钟单位的Active Session数。

◆SQL文SQL> select to_char(sample_time,'yyyy/mm/dd hh24:mi'),count(*)from m_dba_hist_active_sess_historywhere instance_number=<&instance_number>group by to_char(sample_time,'yyyy/mm/dd hh24:mi')order by to_char(sample_time,'yyyy/mm/dd hh24:mi');

通过下面曲线图,咱们能够清晰的看到在11:18 ,所有INSTANCE的Active Session数都有不同水平的减少。

而后,针对增长水平最大的Node1进行进一步的剖析。先来看看Active Session的 PROGRAM散布状况。
通过简略的剖析,咱们能够晓得通过 sqlplus 和 JDBC Thin Client 连上来的SESSION数量最大,并且增长幅度最大。

SQL> select to_char(sample_time,'yyyy/mm/dd hh24:mi'),count(*)from m_dba_hist_active_sess_historywhere instance_number=1and PROGRAM like 'sqlplus%'group by to_char(sample_time,'yyyy/mm/dd hh24:mi')having count(*)>10order by to_char(sample_time,'yyyy/mm/dd hh24:mi');TO_CHAR(SAMPLE_TIME,'YYYY/MM/DDHH24:MI') COUNT(*)------------------------------------------------ ----------。。。 。。。2021/03/22 11:14 122021/03/22 11:15 122021/03/22 11:16 122021/03/22 11:17 122021/03/22 11:18 24   ★SESSION数减少1倍2021/03/22 11:19 222021/03/22 11:20 262021/03/22 11:21 192021/03/22 11:22 162021/03/22 11:23 182021/03/22 11:24 172021/03/22 11:25 182021/03/22 11:26 182021/03/22 11:27 202021/03/22 11:28 222021/03/22 11:29 212021/03/22 11:30 23。。。 。。。SQL> select to_char(sample_time,'yyyy/mm/dd hh24:mi'),count(*)2 from m_dba_hist_active_sess_history3 where instance_number=14 and PROGRAM like 'JDBC Thin Client'5 group by to_char(sample_time,'yyyy/mm/dd hh24:mi')having count(*)>10order by to_char(sample_time,'yyyy/mm/dd hh24:mi'); 6 7TO_CHAR(SAMPLE_TIME,'YYYY/MM/DDHH24:MI') COUNT(*)------------------------------------------------ ---------- 。。。 。。。2021/03/22 11:13 992021/03/22 11:14 1042021/03/22 11:15 1162021/03/22 11:16 1182021/03/22 11:17 1192021/03/22 11:18 168  ★増加した2021/03/22 11:19 1002021/03/22 11:20 1002021/03/22 11:21 1372021/03/22 11:22 1212021/03/22 11:23 1342021/03/22 11:24 1132021/03/22 11:25 1082021/03/22 11:26 1192021/03/22 11:27 892021/03/22 11:28 1072021/03/22 11:29 100 。。。 。。。 

到当初为止,基本上能够断定为11:18左右,通过 sqlplus 和 JDBC Thin Client 连上来的SESSION数过于集中,

引起了I/O解决过多,导致了这次问题的产生。

那这种问题应该如何解决呢?

有上面两个方向:

1.  扩散业务解决。2.  找到I/O多的具体解决,看看有没有I/O少的办法。

第2个方向波及SQL TUNING 的常识,这里不再细说了。

2021/03/23 @ Dalian