作者:阿列克谢·瓦西里耶夫(Alexey Vasiliev)

译者:类延良,任职于瀚高根底软件股份有限公司,PostgreSQL数据库技术爱好者,PostgreSQL ACE、PGCM、10g &11g OCM,OGG认证专家。

原文地址:https://leopard.in.ua/2013/09/02/postgresql-ltree#.YEhtc2gzaUk

在本文中,咱们将学习如何应用PostgreSQL的ltree模块,该模块容许以分层的树状构造存储数据。

什么是ltree?

Ltree是PostgreSQL模块。它实现了一种数据类型ltree,用于示意存储在分层树状构造中的数据的标签。提供了用于搜寻标签树的宽泛工具。

为什么抉择ltree?

  • ltree实现了一个物化门路,对于INSERT / UPDATE / DELETE来说十分快,而对于SELECT操作则较快
  • 通常,它比应用常常须要从新计算分支的递归CTE或递归函数要快
  • 如内置的查问语法和专门用于查问和导航树的运算符
  • 索引!!!

初始数据

首先,您应该在数据库中启用扩大。您能够通过以下命令执行此操作:

CREATE EXTENSION ltree;

让咱们创立表并向其中增加一些数据:

**CREATE** **TABLE** comments (user_id integer, description text, path ltree);**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 1, md5(random()::text), '0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 2, md5(random()::text), '0001.0001.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 2, md5(random()::text), '0001.0001.0001.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 1, md5(random()::text), '0001.0001.0001.0002');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 5, md5(random()::text), '0001.0001.0001.0003');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 6, md5(random()::text), '0001.0002');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 6, md5(random()::text), '0001.0002.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 6, md5(random()::text), '0001.0003');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 8, md5(random()::text), '0001.0003.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 9, md5(random()::text), '0001.0003.0002');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 11, md5(random()::text), '0001.0003.0002.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 2, md5(random()::text), '0001.0003.0002.0002');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 5, md5(random()::text), '0001.0003.0002.0003');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 7, md5(random()::text), '0001.0003.0002.0002.0001');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 20, md5(random()::text), '0001.0003.0002.0002.0002');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 31, md5(random()::text), '0001.0003.0002.0002.0003');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 22, md5(random()::text), '0001.0003.0002.0002.0004');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 34, md5(random()::text), '0001.0003.0002.0002.0005');**INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 22, md5(random()::text), '0001.0003.0002.0002.0006');

另外,咱们应该增加一些索引:

**CREATE** **INDEX** path_gist_comments_idx **ON** comments **USING** GIST(path);**CREATE** **INDEX** path_comments_idx **ON** comments **USING** btree(path);

正如您看到的那样,我建设comments表时带有path字段,该字段蕴含该表的tree全副门路。如您所见,对于树分隔符,我应用4个数字和点。

让咱们在commenets表中找到path以‘0001.0003’的记录:

$ **SELECT** user_id, path **FROM** comments **WHERE** path <@ '0001.0003'; user_id | path_---------+--------------------------_ 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006(12 **rows**)

让咱们通过EXPLAIN命令查看这个SQL:

$ **EXPLAIN** **ANALYZE** **SELECT** user_id, path **FROM** comments **WHERE** path <@ '0001.0003'; QUERY PLAN_----------------------------------------------------------------------------------------------------_ Seq Scan **on** comments (cost=0.00..1.24 **rows**=2 width=38) (actual time=0.013..0.017 **rows**=12 loops=1) Filter: (path <@ '0001.0003'::ltree) **Rows** Removed **by** Filter: 7 Total runtime: 0.038 ms(4 **rows**)

让咱们禁用seq scan进行测试:

$ **SET** enable_seqscan=**false**;**SET**$ **EXPLAIN** **ANALYZE** **SELECT** user_id, path **FROM** comments **WHERE** path <@ '0001.0003'; QUERY PLAN_-----------------------------------------------------------------------------------------------------------------------------------_ **Index** Scan **using** path_gist_comments_idx **on** comments (cost=0.00..8.29 **rows**=2 width=38) (actual time=0.023..0.034 **rows**=12 loops=1) **Index** Cond: (path <@ '0001.0003'::ltree) Total runtime: 0.076 ms(3 **rows**)

当初SQL慢了,然而能看到SQL是怎么应用index的。

第一个SQL语句应用了sequence scan,因为在表中没有太多的数据。

咱们能够将select “path <@ ‘0001.0003’” 换种实现办法:

$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.0003.*';user_id | path_---------+--------------------------_ 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006(12 **rows**)

你不应该遗记数据的程序,如下的例子:

$ **INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 9, md5(random()::text), '0001.0003.0001.0001');$ **INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 9, md5(random()::text), '0001.0003.0001.0002');$ **INSERT** **INTO** comments (user_id, description, path) **VALUES** ( 9, md5(random()::text), '0001.0003.0001.0003');$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.0003.*';user_id | path_---------+--------------------------_ 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003(15 **rows**)

当初进行排序:

$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.0003.*' **ORDER** **by** path; user_id | path_---------+--------------------------_ 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003(15 **rows**)

能够在lquery的非星号标签的开端增加几个修饰符,以使其比齐全匹配更匹配:

“ @”-不辨别大小写匹配,例如a @匹配A

”-匹配任何带有该前缀的标签,例如foo 匹配foobar

“%”-匹配以下划线结尾的单词

$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.*{1,2}.0001|0002.*' **ORDER** **by** path; user_id | path_---------+--------------------------_ 2 | 0001.0001.0001 2 | 0001.0001.0001.0001 1 | 0001.0001.0001.0002 5 | 0001.0001.0001.0003 6 | 0001.0002.0001 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003(19 **rows**)

咱们来为parent ‘0001.0003’找到所有间接的childrens,见下:

$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.0003.*{1}' **ORDER** **by** path; user_id | path_---------+----------------_ 8 | 0001.0003.0001 9 | 0001.0003.0002(2 **rows**)

为parent ‘0001.0003’找到所有的childrens,见下:

$ **SELECT** user_id, path **FROM** comments **WHERE** path ~ '0001.0003.*' **ORDER** **by** path; user_id | path_---------+--------------------------_ 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003(15 **rows**)

为children ‘0001.0003.0002.0002.0005’找到parent:

$ **SELECT** user_id, path **FROM** comments **WHERE** path = subpath('0001.0003.0002.0002.0005', 0, -1) **ORDER** **by** path; user_id | path_---------+---------------------_ 2 | 0001.0003.0002.0002(1 **row**)

如果你的门路不是惟一的,你会失去多条记录。

概述

能够看出,应用ltree的物化门路非常简单。在本文中,我没有列出ltree的所有可能用法。它不被视为全文搜寻问题ltxtquery。然而您能够在PostgreSQL官网文档(http://www.postgresql.org/doc...。

理解更多PostgreSQL热点资讯、新闻动态、精彩流动,请拜访中国PostgreSQL官方网站:www.postgresqlchina.com

解决更多PostgreSQL相干常识、技术、工作问题,请拜访中国PostgreSQL官网问答社区:www.pgfans.cn

下载更多PostgreSQL相干材料、工具、插件问题,请拜访中国PostgreSQL官网下载网站:www.postgreshub.cn