数据结构

JDK1.8ConcurrentHashMap采纳数组+单链表+红黑树的数据结构,数组和链表存储的是一个个Node对象,红黑树存储的是TreeNode对象

    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        volatile V val;        volatile Node<K,V> next;    }    static final class TreeNode<K,V> extends Node<K,V> {        TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;        TreeNode(int hash, K key, V val, Node<K,V> next,                 TreeNode<K,V> parent) {            super(hash, key, val, next);            this.parent = parent;        }    }         

罕用办法

应用

源码剖析

次要属性

//最大容量static final int MAXIMUM_CAPACITY = 1 << 30;//默认容量static final int DEFAULT_INITIAL_CAPACITY = 16;//数组最大容量static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;//加载因子static final float DEFAULT_LOAD_FACTOR = 0.75f;// 链表的树化阈值,即链表转成红黑树的阈值,当Node链表长度>该值时,则将链表转换成红黑树static final int TREEIFY_THRESHOLD = 8; // 链表的还原阈值,即红黑树转为链表的阈值,当在扩容时,HashMap的数据存储地位会从新计算,在从新计算存储地位后,当红黑树内TreeNode数量 < 6时,则将 红黑树转换成链表static final int UNTREEIFY_THRESHOLD = 6;// 最小链表树化容量阈值,即 当Node数组长度 > 该值时,才容许树形化链表,否则则间接扩容,而不是树形化static final int MIN_TREEIFY_CAPACITY = 64;

构造方法

    public ConcurrentHashMap() {    }    public ConcurrentHashMap(int initialCapacity) {        if (initialCapacity < 0)            throw new IllegalArgumentException();        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?                   MAXIMUM_CAPACITY :                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));        this.sizeCtl = cap;    }    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {        this.sizeCtl = DEFAULT_CAPACITY;        putAll(m);    }    public ConcurrentHashMap(int initialCapacity, float loadFactor) {        this(initialCapacity, loadFactor, 1);    }    public ConcurrentHashMap(int initialCapacity,                             float loadFactor, int concurrencyLevel) {        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)            throw new IllegalArgumentException();        if (initialCapacity < concurrencyLevel)   // Use at least as many bins            initialCapacity = concurrencyLevel;   // as estimated threads        long size = (long)(1.0 + (long)initialCapacity / loadFactor);        int cap = (size >= (long)MAXIMUM_CAPACITY) ?            MAXIMUM_CAPACITY : tableSizeFor((int)size);        this.sizeCtl = cap;    }

put()办法

    public V put(K key, V value) {        return putVal(key, value, false);    }    final V putVal(K key, V value, boolean onlyIfAbsent) {        if (key == null || value == null) throw new NullPointerException();        int hash = spread(key.hashCode());        int binCount = 0;        //死循环        for (Node<K,V>[] tab = table;;) {            Node<K,V> f; int n, i, fh;            //1.Node数组初始化            if (tab == null || (n = tab.length) == 0)                tab = initTable();            //2.计算key寄存Node数组中的数组下标,判断这个数组下标Node数组上是否有Node存在                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                //2.1若不存在,阐明没有hash抵触,则示意以后地位能够写入数据,利用CAS尝试写入,失败则自旋保障胜利                if (casTabAt(tab, i, null,                             new Node<K,V>(hash, key, value, null)))                    break;                   // no lock when adding to empty bin            }            //3.以后地位的hashcode==MOVED==-1,则进行扩容            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);            else {                //4.存在hash抵触,利用synchronized锁锁住链表或者红黑树的头结点写入数据                V oldVal = null;                synchronized (f) {                    if (tabAt(tab, i) == f) {                        //4.1以后是Node是链表                        if (fh >= 0) {                            binCount = 1;                            //遍历以该Node为头结点的链表,判断该key是否已存在                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                ////若该key已存在,则用新value替换旧value                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                //若该key不存在,则将key-value增加到Node数组中,这里采纳尾插法                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }                        //4.1以后是Node是红黑树                        else if (f instanceof TreeBin) {                            Node<K,V> p;                            binCount = 2;                            ////向红黑树插入或更新数据(键值对),遍历红黑树判断该节点的key是否与传入key雷同,雷同则新value笼罩旧value,不雷同则插入                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                //6.如果链表中的Node节点>8则须要转换为红黑树                if (binCount != 0) {                    if (binCount >= TREEIFY_THRESHOLD)                        treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        addCount(1L, binCount);        return null;    }     

sizeCtl值含意:
-1:示意正在初始化
-n:示意正在扩容
0:示意还未初始化,默认值
大于0:示意下一次扩容的阈值

initTable()办法

    private final Node<K,V>[] initTable() {        Node<K,V>[] tab; int sc;        while ((tab = table) == null || tab.length == 0) {                    //若以后有其余线程正在初始化,则让出CPU执行权,而后自旋            if ((sc = sizeCtl) < 0)                Thread.yield(); // lost initialization race; just spin            //若以后有没有其余线程正在初始化,将sizeCtl置为-1,相当于拿到了锁            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                try {                    if ((tab = table) == null || tab.length == 0) {                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;                        //初始化数组大小为16                        @SuppressWarnings("unchecked")                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                        table = tab = nt;                        //下一次扩容的大小,0.75n,和以前的扩容阀值绝对应                        sc = n - (n >>> 2);                    }                } finally {                    sizeCtl = sc;                }                break;            }        }        return tab;    }  

get()办法

    public V get(Object key) {        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;        //计算key寄存Node数组中的数组下标,判断这个数组下标Node数组上是否有Node存在        int h = spread(key.hashCode());        if ((tab = table) != null && (n = tab.length) > 0 &&            (e = tabAt(tab, (n - 1) & h)) != null) {            1.在Node数组中找key相等的Node            if ((eh = e.hash) == h) {                if ((ek = e.key) == key || (ek != null && key.equals(ek)))                    return e.val;            }            //2.在红黑树中找key相等的Node             else if (eh < 0)                return (p = e.find(h, key)) != null ? p.val : null;            //3.在链表中找key相等的Node             while ((e = e.next) != null) {                if (e.hash == h &&                    ((ek = e.key) == key || (ek != null && key.equals(ek))))                    return e.val;            }        }        return null;    }

论断

1.JDK1.8ConcurrentHashMap采纳数组+单链表+红黑树的数据结构,数组和链表存储的是一个个Node对象,红黑树存储的是TreeNode对象
2.采纳了CAS + synchronized来保障并发安全性
3.增加key-value时会依据key值计算出对应的hash值,依据hash值计算出对应的Node数组下标,判断这个数组下标Node数组上是否有Node存在,若不存在,阐明没有hash抵触,则示意以后地位能够写入数据,利用CAS尝试写入,失败则自旋保障胜利;若存在阐明有hash抵触,利用synchronized锁锁住链表或者红黑树的头结点写入数据

ConcurrentHashMap1.8与ConcurrentHashMap1.7的区别:
1.1.7采纳数组+链表,1.8采纳数据+链表+红黑树优化了查问速度
2.1.7采纳Segment分段锁,1.8采纳CAS + synchronized升高锁的粒度:JDK1.7版本锁的粒度是基于Segment的,蕴含多个HashEntry,而JDK1.8锁的粒度就是HashEntry