缘起

最近浏览<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采纳golang练习之

网页排名(PageRank/佩奇排名), 随机游走

网页排名(PageRank,也叫作佩奇排名)是一种在搜寻网页时对搜寻后果进行排序的算法。网页排名就是利用网页之间的链接构造计算出网页价值的算法。在网页排名中,链入页面越多的网页,它的重要性也就越高。假如没有链入页面的网页权重为1。有链入页面的网页权重是其链入页面的权重之和。如果一个网页链向多个页面,那么其链向的所有页面将平分它的权重。在网页排名中,链入的页面越多,该网页所收回的链接的价值就越高。能够应用“随机游走模型”(random walk model)来解决网页互链的问题.用户浏览网页的操作就能够这样来定义:用户等概率跳转到以后网页所链向的一个网页的概率为1-;等概率近程跳转到其余网页中的一个网页的概率为。模仿用户随机拜访页面的过程, 每拜访一个页面, 其权重加1,直到拜访的总次数达到N次为止,每个页面的权重值代表的是“某一刻正在浏览这个网页的概率”,可间接将其作为网页的权重来应用。摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一

指标

  • 实现基于随机游走模型的PageRank算法, 并验证其有效性和稳定性(网页权重在模仿若干次后, 保持稳定)

设计

  • IPage: 网页模型接口
  • IPageRanking: 网页排名算法接口
  • tPage: 网页模型的实现
  • tRandomWalkPageRanking: 基于随机游走模型的PageRank算法, 实现IPageRanking接口

单元测试

  • page_rank_test.go, 验证网页排名算法的有效性和稳定性
  • 首先通过简略case验证其有效性
  • 而后随机生成大批量随机互链的网页, 验证在多轮随机游走后, 网页权重的稳定性
package othersimport (    "fmt"    pr "learning/gooop/others/page_rank"    "math/rand"    "sort"    "testing"    "time")func Test_PageRank(t *testing.T) {    fnAssertTrue := func(b bool, msg string) {        if !b {            t.Fatal(msg)        }    }    t.Log("testing simple case")    p11 := pr.NewPage("p11")    p12 := pr.NewPage("p12")    p13 := pr.NewPage("p13")    p21 := pr.NewPage("p21")    p22 := pr.NewPage("p22")    p31 := pr.NewPage("p31")    p32 := pr.NewPage("p32")    p11.AddLink(p21)    p11.AddLink(p22)    p12.AddLink(p21)    p12.AddLink(p22)    p13.AddLink(p21)    p13.AddLink(p22)    p21.AddLink(p31)    p22.AddLink(p31)    p31.AddLink(p32)    p32.AddLink(p31)    samples := []pr.IPage{        p11,p12,p13, p21, p22, p31, p32,    }    pr.RandomWalkPageRanking.RankAll(samples, 1000)    sort.Sort(sort.Reverse(pr.IPageSlice(samples)))    for _,p := range samples {        t.Log(p)    }    fnAssertTrue(samples[0].ID() == "p31", "expecting top.1 = p31")    fnAssertTrue(samples[1].ID() == "p32", "expecting top.2 = p32")    fnAssertTrue(samples[2].ID() == "p21" || samples[2].ID() == "p22", "expecting top.3 in (p21,p22)")    fnAssertTrue(samples[3].ID() == "p21" || samples[3].ID() == "p22", "expecting top.4 in (p21,p22)")    // generate 1000 random pages    iPageCount := 1000    pages := make([]pr.IPage, iPageCount)    for i,_ := range pages {        pages[i] = pr.NewPage(fmt.Sprintf("p%02d.com", i))    }    r := rand.New(rand.NewSource(time.Now().UnixNano()))    for i,p := range pages {        // add random page links        for j,iPageLinks := 0, r.Intn(10);j < iPageLinks; {            n := r.Intn(iPageCount)            if n != i {                j++                p.AddLink(pages[n])            }        }    }    // rank pages and get top 100    mapTop100 := make(map[string]bool, 0)    fnTestRanking := func(rounds int) {        t.Logf("testing page rank with %v rounds", rounds)        bFirstRound := len(mapTop100) == 0        // page ranking        pr.RandomWalkPageRanking.RankAll(pages, rounds)        // sort pages by ranking        sort.Sort(sort.Reverse(pr.IPageSlice(pages)))        hits := 0        for i,p := range pages {            if i < 10 {                t.Log(p)            }            if i < 100 {                if bFirstRound {                    mapTop100[p.ID()] = true                } else if _,ok := mapTop100[p.ID()];ok {                    hits++                }            } else {                break            }        }        if !bFirstRound {            t.Logf("hit rate: %s%v", "%", hits)        }    }    // test stability under different rounds    fnTestRanking(3000)    fnTestRanking(10000)    fnTestRanking(30000)    fnTestRanking(90000)}

测试输入

  • 测试表明, 当随机游走的总次数 >= 网页数量 * 每个网页的均匀收回链接数时, 所得排名是比较稳定的
$ go test -v page_rank_test.go === RUN   Test_PageRank    page_rank_test.go:19: testing simple case    page_rank_test.go:47: p(p31,   0.4206, [p32])    page_rank_test.go:47: p(p32,   0.3673, [p31])    page_rank_test.go:47: p(p21,   0.0639, [p31])    page_rank_test.go:47: p(p22,   0.0604, [p31])    page_rank_test.go:47: p(p11,   0.0300, [p21 p22])    page_rank_test.go:47: p(p12,   0.0291, [p21 p22])    page_rank_test.go:47: p(p13,   0.0287, [p21 p22])    page_rank_test.go:77: testing page rank with 3000 rounds    page_rank_test.go:89: p(p604.com,   0.0039, [])    page_rank_test.go:89: p(p807.com,   0.0035, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com])    page_rank_test.go:89: p(p72.com,   0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com])    page_rank_test.go:89: p(p712.com,   0.0033, [p485.com p451.com p236.com p141.com p168.com p693.com])    page_rank_test.go:89: p(p452.com,   0.0032, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com])    page_rank_test.go:89: p(p709.com,   0.0031, [p666.com p554.com p103.com p202.com p230.com])    page_rank_test.go:89: p(p975.com,   0.0029, [])    page_rank_test.go:89: p(p840.com,   0.0029, [p974.com p698.com p49.com p851.com p73.com])    page_rank_test.go:89: p(p867.com,   0.0028, [p588.com p196.com p931.com p381.com p621.com p848.com])    page_rank_test.go:89: p(p633.com,   0.0028, [p840.com])    page_rank_test.go:77: testing page rank with 10000 rounds    page_rank_test.go:89: p(p604.com,   0.0039, [])    page_rank_test.go:89: p(p807.com,   0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com])    page_rank_test.go:89: p(p72.com,   0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com])    page_rank_test.go:89: p(p452.com,   0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com])    page_rank_test.go:89: p(p712.com,   0.0033, [p485.com p451.com p236.com p141.com p168.com p693.com])    page_rank_test.go:89: p(p709.com,   0.0031, [p666.com p554.com p103.com p202.com p230.com])    page_rank_test.go:89: p(p975.com,   0.0029, [])    page_rank_test.go:89: p(p840.com,   0.0029, [p974.com p698.com p49.com p851.com p73.com])    page_rank_test.go:89: p(p612.com,   0.0028, [p116.com p562.com p179.com p37.com p761.com])    page_rank_test.go:89: p(p319.com,   0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com])    page_rank_test.go:104: hit rate: %98    page_rank_test.go:77: testing page rank with 30000 rounds    page_rank_test.go:89: p(p604.com,   0.0039, [])    page_rank_test.go:89: p(p807.com,   0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com])    page_rank_test.go:89: p(p72.com,   0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com])    page_rank_test.go:89: p(p452.com,   0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com])    page_rank_test.go:89: p(p712.com,   0.0032, [p485.com p451.com p236.com p141.com p168.com p693.com])    page_rank_test.go:89: p(p709.com,   0.0031, [p666.com p554.com p103.com p202.com p230.com])    page_rank_test.go:89: p(p975.com,   0.0029, [])    page_rank_test.go:89: p(p840.com,   0.0029, [p974.com p698.com p49.com p851.com p73.com])    page_rank_test.go:89: p(p319.com,   0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com])    page_rank_test.go:89: p(p612.com,   0.0028, [p116.com p562.com p179.com p37.com p761.com])    page_rank_test.go:104: hit rate: %98    page_rank_test.go:77: testing page rank with 90000 rounds    page_rank_test.go:89: p(p604.com,   0.0039, [])    page_rank_test.go:89: p(p807.com,   0.0034, [p709.com p328.com p303.com p110.com p858.com p394.com p231.com p731.com p83.com])    page_rank_test.go:89: p(p72.com,   0.0034, [p249.com p347.com p604.com p533.com p416.com p958.com p966.com p385.com])    page_rank_test.go:89: p(p452.com,   0.0033, [p588.com p344.com p618.com p258.com p394.com p285.com p780.com p606.com p89.com])    page_rank_test.go:89: p(p712.com,   0.0032, [p485.com p451.com p236.com p141.com p168.com p693.com])    page_rank_test.go:89: p(p709.com,   0.0031, [p666.com p554.com p103.com p202.com p230.com])    page_rank_test.go:89: p(p975.com,   0.0029, [])    page_rank_test.go:89: p(p840.com,   0.0029, [p974.com p698.com p49.com p851.com p73.com])    page_rank_test.go:89: p(p612.com,   0.0028, [p116.com p562.com p179.com p37.com p761.com])    page_rank_test.go:89: p(p319.com,   0.0028, [p726.com p63.com p558.com p301.com p185.com p944.com])    page_rank_test.go:104: hit rate: %98--- PASS: Test_PageRank (13.93s)PASSok      command-line-arguments  13.936s

IPage.go

网页模型接口

package page_rankimport "fmt"type IPage interface {    fmt.Stringer    ID() string    GetWeight() float64    SetWeight(float64)    GetLinks() []IPage    AddLink(IPage)}type IPageSlice []IPagefunc (me IPageSlice) Len() int {    return len(me)}func (me IPageSlice) Less(i,j int) bool {    return me[i].GetWeight() < me[j].GetWeight()}func (me IPageSlice) Swap(i,j int) {    me[i], me[j] = me[j], me[i]}

IPageRanking.go

网页排名算法接口

package page_ranktype IPageRanking interface {    RankAll(pages []IPage, rounds int)}

tPage.go

网页模型的实现

package page_rankimport (    "fmt"    "strings")type tPage struct {    id string    weight float64    links []IPage}func NewPage(id string) IPage {    return &tPage{        id: id,        weight: 0,        links: []IPage{},    }}func (me *tPage) ID() string {    return me.id}func (me *tPage) GetWeight() float64 {    return me.weight}func (me *tPage) SetWeight(w float64) {    me.weight = w}func (me *tPage) GetLinks() []IPage {    return me.links}func (me *tPage) AddLink(p IPage) {    me.links = append(me.links, p)}func (me *tPage) String() string {    linkStrings := make([]string, len(me.links))    for i,p := range me.links {        linkStrings[i] = p.ID()    }    return fmt.Sprintf("p(%v, %8.4f, [%v])", me.id, me.weight, strings.Join(linkStrings, " "))}

tRandomWalkPageRanking.go

基于随机游走模型的PageRank算法, 实现IPageRanking接口

package page_rankimport (    "math/rand"    "time")type tRandomWalkPageRanking struct {}var gPossiblityToLinkedPage = 85func newRandomWalkPageRanking() IPageRanking {    return &tRandomWalkPageRanking{}}func (me *tRandomWalkPageRanking) RankAll(pages []IPage, rounds int) {    iPageCount := len(pages)    if iPageCount <= 0 {        return    }    r := rand.New(rand.NewSource(time.Now().UnixNano()))    current := pages[0]    iVisitCount := iPageCount * rounds    for i := 0;i < iVisitCount;i++ {        // visit current page        current.SetWeight(current.GetWeight() + 1)        possibility := r.Intn(100)        if possibility < gPossiblityToLinkedPage && len(current.GetLinks())>0 {            // goto linked page            current = me.VisitLinkedPage(current, r)        } else {            // goto unlinked page            current = me.VisitUnlinkedPage(current, pages, r)        }    }    fVisitCount := float64(iVisitCount)    for _,p := range pages {        p.SetWeight(p.GetWeight() / fVisitCount)    }}func (me *tRandomWalkPageRanking) VisitLinkedPage(current IPage, r *rand.Rand) IPage {    links := current.GetLinks()    next := links[r.Intn(len(links))]    return next}func (me *tRandomWalkPageRanking) VisitUnlinkedPage(current IPage, pages []IPage, r *rand.Rand) IPage {    mapLinks := make(map[string]bool, 0)    mapLinks[current.ID()] = true    for _,p := range current.GetLinks() {        mapLinks[p.ID()] = true    }    n := len(pages)    for {        next := pages[r.Intn(n)]        if _,ok := mapLinks[next.ID()];!ok {            return next        }    }}var RandomWalkPageRanking = newRandomWalkPageRanking()

(end)