背景
在nlp畛域,预训练模型bert堪称是红得发紫。
但当初能搜到的大多数都是pytorch写的框架,而且大多都是单输入模型。
所以,本文以 有互相关系的多层标签分类 为背景,用keras设计了多输入、参数共享的模型。
keras_bert根底利用
def batch_iter(data_path, cat_to_id, tokenizer, batch_size=64, shuffle=True): """生成批次数据""" keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) indices_list = [] segments_list = [] label_index_list = [] for data in data_list: indices, segments, label_index = data indices_list.append(indices) segments_list.append(segments) label_index_list.append(label_index) yield [np.array(indices_list), np.array(segments_list)], np.array(label_index_list)def get_model(label_list): K.clear_session() bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length) #加载预训练模型 for l in bert_model.layers: l.trainable = True input_indices = Input(shape=(None,)) input_segments = Input(shape=(None,)) bert_output = bert_model([input_indices, input_segments]) bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类 output = Dense(len(label_list), activation='softmax')(bert_cls) model = Model([input_indices, input_segments], output) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(1e-5), #用足够小的学习率 metrics=['accuracy']) print(model.summary()) return modelearly_stopping = EarlyStopping(monitor='val_acc', patience=3) #早停法,避免过拟合plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评估指标不在晋升时,缩小学习率checkpoint = ModelCheckpoint('trained_model/keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保留最好的模型def get_step(sample_count, batch_size): step = sample_count // batch_size if sample_count % batch_size != 0: step += 1 return stepbatch_size = 4train_step = get_step(train_sample_count, batch_size)dev_step = get_step(dev_sample_count, batch_size)train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size)dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, batch_size)model = get_model(categories)#模型训练model.fit( train_dataset_iterator, steps_per_epoch=train_step, epochs=10, validation_data=dev_dataset_iterator, validation_steps=dev_step, callbacks=[early_stopping, plateau, checkpoint], verbose=1)
多输入、参数共享的模型设计
def batch_iter(data_path, cat_to_id, tokenizer, second_label_list, batch_size=64, shuffle=True): """生成批次数据""" keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) indices_list = [] segments_list = [] label_index_list = [] second_label_list = [] for data in data_list: indices, segments, label_index, second_label = data indices_list.append(indices) segments_list.append(segments) label_index_list.append(label_index) second_label_list.append(second_label) yield [np.array(indices_list), np.array(segments_list)], [np.array(label_index_list), np.array(second_label_list)]def get_model(label_list, second_label_list): K.clear_session() bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length) #加载预训练模型 for l in bert_model.layers: l.trainable = True input_indices = Input(shape=(None,)) input_segments = Input(shape=(None,)) bert_output = bert_model([input_indices, input_segments]) bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类 output = Dense(len(label_list), activation='softmax')(bert_cls) output_second = Dense(len(second_label_list), activation='softmax')(bert_cls) model = Model([input_indices, input_segments], [output, output_second]) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(1e-5), #用足够小的学习率 metrics=['accuracy']) print(model.summary()) return modelbatch_size = 4train_step = get_step(train_sample_count, batch_size)dev_step = get_step(dev_sample_count, batch_size)train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size)dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)model = get_model(categories, second_label_list)#模型训练model.fit( train_dataset_iterator, steps_per_epoch=train_step, epochs=10, validation_data=dev_dataset_iterator, validation_steps=dev_step, callbacks=[early_stopping, plateau, checkpoint], verbose=1)
附录
全副源码
import osimport sysimport refrom collections import Counterimport randomfrom tqdm import tqdmimport numpy as npimport tensorflow.keras as kerasfrom keras_bert import load_vocabulary, load_trained_model_from_checkpoint, Tokenizer, get_checkpoint_pathsfrom keras_bert.layers import MaskedGlobalMaxPool1Dfrom keras_bert import load_trained_model_from_checkpoint, Tokenizerfrom keras.metrics import top_k_categorical_accuracyfrom keras.layers import *from keras.callbacks import *from keras.models import Modelimport keras.backend as Kfrom keras.optimizers import Adamfrom keras.utils import to_categorical
data_path = "000_text_classifier_tensorflow_textcnn/THUCNews/"text_max_length = 512bert_paths = get_checkpoint_paths(r"chinese_L-12_H-768_A-12")
构建原数据文本迭代器
def _read_file(filename): """读取一个文件并转换为一行""" with open(filename, 'r', encoding='utf-8') as f: s = f.read().strip().replace('\n', '。').replace('\t', '').replace('\u3000', '') return re.sub(r'。+', '。', s)
def get_data_iterator(data_path): for category in os.listdir(data_path): category_path = os.path.join(data_path, category) for file_name in os.listdir(category_path): yield _read_file(os.path.join(category_path, file_name)), category
it = get_data_iterator(data_path)
next(it)
('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队是否一黑到底,发明亚洲奇观?男子足坛霸主美国队是否再次“灭黑”胜利,成就三冠伟业?巴西、巴拉圭狭路相逢,谁又能笑到最初?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则保卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯过程惊人类似,小组赛前两轮全胜,最初一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将发明女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事件太多。巴西、巴拉圭狭路相逢仿佛更具传奇色彩。两队小组赛同分在B组,本来两个出线大热门,却双双在前两轮小组赛战平,两队间接交锋就是2:2平局,后果双双面临出局危险。最初一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔青出于蓝以小组第一出线,而巴拉圭最初一战还是3:3战平委内瑞拉取得小组第三,幸运凭借净胜球劣势挤掉A组第三名的哥斯达黎加,取得一个八强席位。在小组赛,巴西队是在最初时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛仿佛都不足运气,此番又会否被幸运之神弥补一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名升级八强;而委内瑞拉在B组是最不被看好的球队,但居然在与巴西、巴拉圭同组的状况下,前两轮就奠定了小组出线权,他们小组3战1胜2平放弃不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对弱小的巴西都能放弃球门不失,此番再创佳绩也不足为怪。', '彩票')
构建标签表
def read_category(data_path): """读取分类目录,固定""" categories = os.listdir(data_path) cat_to_id = dict(zip(categories, range(len(categories)))) return categories, cat_to_id
categories, cat_to_id = read_category(data_path)
cat_to_id
{'彩票': 0, '家居': 1, '游戏': 2, '股票': 3, '科技': 4, '社会': 5, '财经': 6, '时尚': 7, '星座': 8, '体育': 9, '房产': 10, '娱乐': 11, '时政': 12, '教育': 13}
categories
['彩票', '家居', '游戏', '股票', '科技', '社会', '财经', '时尚', '星座', '体育', '房产', '娱乐', '时政', '教育']
构建训练、验证、测试集
def build_dataset(data_path, train_path, dev_path, test_path): data_iter = get_data_iterator(data_path) with open(train_path, 'w', encoding='utf-8') as train_file, \ open(dev_path, 'w', encoding='utf-8') as dev_file, \ open(test_path, 'w', encoding='utf-8') as test_file: for text, label in tqdm(data_iter): radio = random.random() if radio < 0.8: train_file.write(text + "\t" + label + "\n") elif radio < 0.9: dev_file.write(text + "\t" + label + "\n") else: test_file.write(text + "\t" + label + "\n")
# build_dataset(data_path, r"data/keras_bert_train.txt", r"data/keras_bert_dev.txt", r"data/keras_bert_test.txt")
获取数据集样本个数
def get_sample_num(data_path): count = 0 with open(data_path, 'r', encoding='utf-8') as data_file: for line in tqdm(data_file): count += 1 return count
train_sample_count = get_sample_num(r"data/keras_bert_train.txt")
668858it [00:09, 67648.27it/s]
dev_sample_count = get_sample_num(r"data/keras_bert_dev.txt")
83721it [00:01, 61733.96it/s]
test_sample_count = get_sample_num(r"data/keras_bert_test.txt")
83496it [00:01, 72322.53it/s]
train_sample_count, dev_sample_count, test_sample_count
(668858, 83721, 83496)
构建数据迭代器
def get_text_iterator(data_path): with open(data_path, 'r', encoding='utf-8') as data_file: for line in data_file: data_split = line.strip().split('\t') if len(data_split) != 2: print(line) continue yield data_split[0], data_split[1]
it = get_text_iterator(r"data/keras_bert_train.txt")
next(it)
('竞彩解析:日本美国争冠死磕 两巴相逢必有生死。周日受注赛事,女足世界杯决赛、美洲杯两场1/4决赛毫无疑问是全世界球迷和彩民关注的焦点。本届女足世界杯的最大黑马日本队是否一黑到底,发明亚洲奇观?男子足坛霸主美国队是否再次“灭黑”胜利,成就三冠伟业?巴西、巴拉圭狭路相逢,谁又能笑到最初?诸多谜底,在周一凌晨就会揭晓。日本美国争冠死磕。本届女足世界杯,是颠覆与反颠覆之争。夺冠大热门东道主德国队1/4决赛被日本队加时赛一球而“黑”,另一个夺冠大热门瑞典队则在半决赛被日本队3:1彻底打垮。而美国队则保卫着女足豪强的尊严,在1/4决赛,她们与巴西女足苦战至点球大战,最终以5:3淘汰这支迅速崛起的黑马球队,而在半决赛,她们更是3:1大胜欧洲黑马法国队。美日两队此次世界杯过程惊人类似,小组赛前两轮全胜,最初一轮输球,1/4决赛同样与对手90分钟内战成平局,半决赛竟同样3:1大胜对手。此次决战,无论是日本还是美国队夺冠,均将发明女足世界杯新的历史。两巴相逢必有生死。本届美洲杯,让人大跌眼镜的事件太多。巴西、巴拉圭狭路相逢仿佛更具传奇色彩。两队小组赛同分在B组,本来两个出线大热门,却双双在前两轮小组赛战平,两队间接交锋就是2:2平局,后果双双面临出局危险。最初一轮,巴西队在下半场终于发威,4:2大胜厄瓜多尔青出于蓝以小组第一出线,而巴拉圭最初一战还是3:3战平委内瑞拉取得小组第三,幸运凭借净胜球劣势挤掉A组第三名的哥斯达黎加,取得一个八强席位。在小组赛,巴西队是在最初时刻才逼平了巴拉圭,他们的好运气会在淘汰赛再显神威吗?巴拉圭此前3轮小组赛仿佛都不足运气,此番又会否被幸运之神弥补一下呢?。另一场美洲杯1/4决赛,智利队在C组小组赛2胜1平以小组头名升级八强;而委内瑞拉在B组是最不被看好的球队,但居然在与巴西、巴拉圭同组的状况下,前两轮就奠定了小组出线权,他们小组3战1胜2平放弃不败战绩,而入球数跟智利一样都是4球,只是失球数比智利多了1个。但既然他们面对弱小的巴西都能放弃球门不失,此番再创佳绩也不足为怪。', '彩票')
token_dict = load_vocabulary(bert_paths.vocab)
tokenizer = Tokenizer(token_dict)
def get_keras_bert_iterator(data_path, cat_to_id, tokenizer): while True: data_iter = get_text_iterator(data_path) for text, category in data_iter: indices, segments = tokenizer.encode(first=text, max_len=text_max_length) yield indices, segments, cat_to_id[category]
it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer)
# next(it)
构建批次数据迭代器
def batch_iter(data_path, cat_to_id, tokenizer, batch_size=64, shuffle=True): """生成批次数据""" keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) indices_list = [] segments_list = [] label_index_list = [] for data in data_list: indices, segments, label_index = data indices_list.append(indices) segments_list.append(segments) label_index_list.append(label_index) yield [np.array(indices_list), np.array(segments_list)], np.array(label_index_list)
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=1)
# next(it)
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size=2)
next(it)
([array([[ 101, 4993, 2506, ..., 131, 123, 102], [ 101, 2506, 3696, ..., 1139, 125, 102]]), array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]])], array([0, 0]))
定义base模型
def get_model(label_list): K.clear_session() bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length) #加载预训练模型 for l in bert_model.layers: l.trainable = True input_indices = Input(shape=(None,)) input_segments = Input(shape=(None,)) bert_output = bert_model([input_indices, input_segments]) bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类 output = Dense(len(label_list), activation='softmax')(bert_cls) model = Model([input_indices, input_segments], output) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(1e-5), #用足够小的学习率 metrics=['accuracy']) print(model.summary()) return model
early_stopping = EarlyStopping(monitor='val_acc', patience=3) #早停法,避免过拟合plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评估指标不在晋升时,缩小学习率checkpoint = ModelCheckpoint('trained_model/keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保留最好的模型
模型训练
def get_step(sample_count, batch_size): step = sample_count // batch_size if sample_count % batch_size != 0: step += 1 return step
batch_size = 4train_step = get_step(train_sample_count, batch_size)dev_step = get_step(dev_sample_count, batch_size)train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, batch_size)dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, batch_size)model = get_model(categories)#模型训练model.fit( train_dataset_iterator, steps_per_epoch=train_step, epochs=10, validation_data=dev_dataset_iterator, validation_steps=dev_step, callbacks=[early_stopping, plateau, checkpoint], verbose=1)
Model: "functional_5"__________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to ==================================================================================================input_1 (InputLayer) [(None, 512)] 0 __________________________________________________________________________________________________input_2 (InputLayer) [(None, 512)] 0 __________________________________________________________________________________________________functional_3 (Functional) (None, 512, 768) 101677056 input_1[0][0] input_2[0][0] __________________________________________________________________________________________________lambda (Lambda) (None, 768) 0 functional_3[0][0] __________________________________________________________________________________________________dense (Dense) (None, 14) 10766 lambda[0][0] ==================================================================================================Total params: 101,687,822Trainable params: 101,687,822Non-trainable params: 0__________________________________________________________________________________________________NoneEpoch 1/10 5/167215 [..............................] - ETA: 775:02:36 - loss: 0.4064 - accuracy: 0.9000---------------------------------------------------------------------------
多输入模型
构建数据迭代器
second_label_list = [0, 1, 2]
def get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list): while True: data_iter = get_text_iterator(data_path) for text, category in data_iter: indices, segments = tokenizer.encode(first=text, max_len=text_max_length) yield indices, segments, cat_to_id[category], random.choice(second_label_list)
it = get_keras_bert_iterator(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list)
# next(it)
def batch_iter(data_path, cat_to_id, tokenizer, second_label_list, batch_size=64, shuffle=True): """生成批次数据""" keras_bert_iter = get_keras_bert_iterator(data_path, cat_to_id, tokenizer, second_label_list) while True: data_list = [] for _ in range(batch_size): data = next(keras_bert_iter) data_list.append(data) if shuffle: random.shuffle(data_list) indices_list = [] segments_list = [] label_index_list = [] second_label_list = [] for data in data_list: indices, segments, label_index, second_label = data indices_list.append(indices) segments_list.append(segments) label_index_list.append(label_index) second_label_list.append(second_label) yield [np.array(indices_list), np.array(segments_list)], [np.array(label_index_list), np.array(second_label_list)]
it = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size=2)
next(it)
([array([[ 101, 4993, 2506, ..., 131, 123, 102], [ 101, 2506, 3696, ..., 1139, 125, 102]]), array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]])], [array([0, 0]), array([0, 0])])
定义模型
def get_model(label_list, second_label_list): K.clear_session() bert_model = load_trained_model_from_checkpoint(bert_paths.config, bert_paths.checkpoint, seq_len=text_max_length) #加载预训练模型 for l in bert_model.layers: l.trainable = True input_indices = Input(shape=(None,)) input_segments = Input(shape=(None,)) bert_output = bert_model([input_indices, input_segments]) bert_cls = Lambda(lambda x: x[:, 0])(bert_output) # 取出[CLS]对应的向量用来做分类 output = Dense(len(label_list), activation='softmax')(bert_cls) output_second = Dense(len(second_label_list), activation='softmax')(bert_cls) model = Model([input_indices, input_segments], [output, output_second]) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(1e-5), #用足够小的学习率 metrics=['accuracy']) print(model.summary()) return model
early_stopping = EarlyStopping(monitor='val_acc', patience=3) #早停法,避免过拟合plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评估指标不在晋升时,缩小学习率checkpoint = ModelCheckpoint('trained_model/muilt_keras_bert_THUCNews.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保留最好的模型
模型训练
batch_size = 4train_step = get_step(train_sample_count, batch_size)dev_step = get_step(dev_sample_count, batch_size)train_dataset_iterator = batch_iter(r"data/keras_bert_train.txt", cat_to_id, tokenizer, second_label_list, batch_size)dev_dataset_iterator = batch_iter(r"data/keras_bert_dev.txt", cat_to_id, tokenizer, second_label_list, batch_size)model = get_model(categories, second_label_list)#模型训练model.fit( train_dataset_iterator, steps_per_epoch=train_step, epochs=10, validation_data=dev_dataset_iterator, validation_steps=dev_step, callbacks=[early_stopping, plateau, checkpoint], verbose=1)
Model: "functional_5"__________________________________________________________________________________________________Layer (type) Output Shape Param # Connected to ==================================================================================================input_1 (InputLayer) [(None, 512)] 0 __________________________________________________________________________________________________input_2 (InputLayer) [(None, 512)] 0 __________________________________________________________________________________________________functional_3 (Functional) (None, 512, 768) 101677056 input_1[0][0] input_2[0][0] __________________________________________________________________________________________________lambda (Lambda) (None, 768) 0 functional_3[0][0] __________________________________________________________________________________________________dense (Dense) (None, 14) 10766 lambda[0][0] __________________________________________________________________________________________________dense_1 (Dense) (None, 3) 2307 lambda[0][0] ==================================================================================================Total params: 101,690,129Trainable params: 101,690,129Non-trainable params: 0__________________________________________________________________________________________________NoneEpoch 1/10 7/167215 [..............................] - ETA: 1829:52:33 - loss: 3.1260 - dense_loss: 1.4949 - dense_1_loss: 1.6311 - dense_accuracy: 0.6429 - dense_1_accuracy: 0.3571