缘起

最近浏览<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采纳golang练习之

狄克斯特拉算法

与贝尔曼-福特算法相似,狄克斯特拉(Dijkstra)算法也是求解最短门路问题的算法,应用它能够求得从终点到起点的门路中权重总和最小的那条门路。比起须要对所有的边都反复计算权重和更新权重的贝尔曼-福特算法,狄克斯特拉算法多了一步抉择顶点的操作,这使得它在求最短门路上更为高效。如果闭环中有正数权重,就不存在最短门路。贝尔曼-福特算法能够间接认定不存在最短门路,但在狄克斯特拉算法中,即使不存在最短门路,它也会算出一个谬误的最短门路进去。因而,有正数权重时不能应用狄克斯特拉算法。摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
  • 狄克斯特拉算法与贝尔曼-福特算法十分类似, 次要区别在于总是优先选择权重最小的候选节点.
  • 因而, 贝尔曼-福特算法应用队列或堆栈存储候选节点, 而狄克斯特拉算法应用堆.

流程

  1. 给定若干顶点, 以及顶点间的若干条边, 寻找从指定终点srcNode到指定起点dstNode的最小权重门路
  2. 设定srcNode的权重为0, 其余顶点的权重为无穷大
  3. 将srcNode节点送入候选堆
  4. for 候选堆不为空:

    1. 从候选堆pop顶点node
    2. 如果node.id == dstNode.id, 循环完结
    3. 遍历从node登程的所有边, 将边的起点to的权重, 更新为min(起点权重, node.权重+边.权重)
    4. 如果to.权重 > node.权重+边.权重, 阐明更新无效
    5. 如果更新无效, 判断to是否在堆中, 如果是, 则上浮以保护堆秩序, 否则, 将to节点push入候选堆
  5. 判断起点的权重是否被更新(!=无穷大), 如果是则阐明存在最短门路
  6. 反向查找最短门路:

    1. 设定以后节点current = 起点
    2. push节点current进门路队列
    3. 遍历起点为current的边, 查找符合条件的node:边的终点.权重 = current.权重-边.权重
    4. push节点node进门路队列
    5. 循环1-4, 直到current == srcNode, 查找实现

设计

  • INode: 顶点接口
  • ILine: 边接口
  • IPathFinder: 最短门路查找算法接口
  • IComparator: 顶点比拟接口
  • IHeap: 顶点堆接口
  • tNode: 顶点, 实现INode
  • tLine: 边, 实现ILine
  • tNodeWeightComparator: 基于权重的顶点比拟器, 实现IComparator接口
  • tArrayHeap: 堆的实现
  • tDijkstraPathFinder: 狄克斯特拉算法的实现

单元测试

dijkstra_finder_test.go

package graphimport (    "fmt"    dk "learning/gooop/graph/dijkstra"    "strings"    "testing")func Test_DijkstraFinder(t *testing.T) {    fnAssertTrue := func(b bool, msg string) {        if !b {            t.Fatal(msg)        }    }    nodes := []dk.INode{        dk.NewNode("a"),        dk.NewNode("b"),        dk.NewNode("c"),        dk.NewNode("d"),        dk.NewNode("e"),        dk.NewNode("f"),        dk.NewNode("g"),    }    lines := []dk.ILine {        dk.NewLine("a", "b", 9),        dk.NewLine("a", "c", 2),        dk.NewLine("b", "c", 6),        dk.NewLine("b", "d", 3),        dk.NewLine("b", "e", 1),        dk.NewLine("c", "d", 2),        dk.NewLine("c", "f", 9),        dk.NewLine("d", "e", 5),        dk.NewLine("d", "f", 6),        dk.NewLine("e", "f", 3),        dk.NewLine("e", "g", 7),        dk.NewLine("f", "g", 4),    }    for _,it := range lines[:] {        lines = append(lines, dk.NewLine(it.To(), it.From(), it.Weight()))    }    ok,path := dk.DijkstraPathFinder.FindPath(nodes, lines, "a", "g")    if !ok {        t.Fatal("failed to find min path")    }    fnPathToString := func(nodes []dk.INode) string {        items := make([]string, len(nodes))        for i,it := range nodes {            items[i] = fmt.Sprintf("%s", it)        }        return strings.Join(items, " ")    }    pathString := fnPathToString(path)    t.Log(pathString)    fnAssertTrue(pathString == "a(0) c(2) d(4) f(10) g(14)", "incorrect path")}

测试输入

$ go test -v dijkstra_finder_test.go === RUN   Test_DijkstraFinder    dijkstra_finder_test.go:63: a(0) c(2) d(4) f(10) g(14)--- PASS: Test_DijkstraFinder (0.00s)PASSok      command-line-arguments  0.001s

INode.go

顶点接口

package dijkstratype INode interface {    ID() string    GetWeight() int    SetWeight(int)}const MaxWeight = int(0x7fffffff_ffffffff)

ILine.go

边接口

package dijkstratype ILine interface {    From() string    To() string    Weight() int}

IPathFinder.go

最短门路查找算法接口

package dijkstratype IPathFinder interface {    FindPath(nodes []INode, lines []ILine, from string, to string) (bool,[]INode)}

IComparator.go

顶点比拟接口

package dijkstratype IComparator interface {    Less(a interface{}, b interface{}) bool}

IHeap.go

顶点堆接口

package dijkstratype IHeap interface {    Size() int    IsEmpty() bool    IsNotEmpty() bool    Push(node interface{})    Pop() (bool, interface{})    IndexOf(node interface{}) int    ShiftUp(i int)}

tNode.go

顶点, 实现INode

package dijkstraimport "fmt"type tNode struct {    id string    weight int}func NewNode(id string) INode {    return &tNode{        id,MaxWeight,    }}func (me *tNode) ID() string {    return me.id}func (me *tNode) GetWeight() int {    return me.weight}func (me *tNode) SetWeight(w int) {    me.weight = w}func (me *tNode) String() string {    return fmt.Sprintf("%s(%v)", me.id, me.weight)}

tLine.go

边, 实现ILine

package dijkstratype tLine struct {    from string    to string    weight int}func NewLine(from string, to string, weight int) ILine {    return &tLine{        from,to,weight,    }}func (me *tLine) From() string {    return me.from}func (me *tLine) To() string {    return me.to}func (me *tLine) Weight() int {    return me.weight}

tNodeWeightComparator.go

基于权重的顶点比拟器, 实现IComparator接口

package dijkstraimport "errors"type tNodeWeightComparator struct {}func newNodeWeightComparator() IComparator {    return &tNodeWeightComparator{    }}func (me *tNodeWeightComparator) Less(a interface{}, b interface{}) bool {    if a == nil || b == nil {        panic(gNullArgumentError)    }    n1 := a.(INode)    n2 := b.(INode)    return n1.GetWeight() <= n2.GetWeight()}var gNullArgumentError = errors.New("null argument error")

tArrayHeap.go

堆的实现

package dijkstraimport (    "errors"    "fmt"    "strings")type tArrayHeap struct {    comparator IComparator    items []interface{}    size int    version int64}func newArrayHeap(comparator IComparator) IHeap {    return &tArrayHeap{        comparator: comparator,        items: make([]interface{}, 0),        size: 0,        version: 0,    }}func (me *tArrayHeap) Size() int {    return me.size}func (me *tArrayHeap) IsEmpty() bool {    return me.size <= 0}func (me *tArrayHeap) IsNotEmpty() bool {    return !me.IsEmpty()}func (me *tArrayHeap) Push(value interface{}) {    me.version++    me.ensureSize(me.size + 1)    me.items[me.size] = value    me.size++    me.ShiftUp(me.size - 1)    me.version++}func (me *tArrayHeap) ensureSize(size int) {    for ;len(me.items) < size; {        me.items = append(me.items, nil)    }}func (me *tArrayHeap) parentOf(i int) int {    return (i - 1) / 2}func (me *tArrayHeap) leftChildOf(i int) int {    return i*2 + 1}func (me *tArrayHeap) rightChildOf(i int) int {    return me.leftChildOf(i) + 1}func (me *tArrayHeap) last() (i int, v interface{}) {    if me.IsEmpty() {        return -1, nil    }    i = me.size - 1    v = me.items[i]    return i,v}func (me *tArrayHeap) IndexOf(node interface{}) int {    n := -1    for i,it := range me.items {        if it == node {            n = i            break        }    }    return n}func (me *tArrayHeap) ShiftUp(i int) {    if i <= 0 {        return    }    v := me.items[i]    pi := me.parentOf(i)    pv := me.items[pi]    if me.comparator.Less(v, pv) {        me.items[pi], me.items[i] = v, pv        me.ShiftUp(pi)    }}func (me *tArrayHeap) Pop() (bool, interface{}) {    if me.IsEmpty() {        return false, nil    }    me.version++    top := me.items[0]    li, lv := me.last()    me.items[0] = nil    me.size--    if me.IsEmpty() {        return true, top    }    me.items[0] = lv    me.items[li] = nil    me.shiftDown(0)    me.version++    return true, top}func (me *tArrayHeap) shiftDown(i int) {    pv := me.items[i]    ok, ci, cv := me.minChildOf(i)    if ok && me.comparator.Less(cv, pv) {        me.items[i], me.items[ci] = cv, pv        me.shiftDown(ci)    }}func (me *tArrayHeap) minChildOf(p int) (ok bool, i int, v interface{}) {    li := me.leftChildOf(p)    if li >= me.size {        return false, 0, nil    }    lv := me.items[li]    ri := me.rightChildOf(p)    if ri >= me.size {        return true, li, lv    }    rv := me.items[ri]    if me.comparator.Less(lv, rv) {        return true, li, lv    } else {        return true, ri, rv    }}func (me *tArrayHeap) String() string {    level := 0    lines := make([]string, 0)    lines = append(lines, "")    for {        n := 1<<level        min := n - 1        max := n + min - 1        if min >= me.size {            break        }        line := make([]string, 0)        for i := min;i <= max;i++ {            if i >= me.size {                break            }            line = append(line, fmt.Sprintf("%4d", me.items[i]))        }        lines = append(lines, strings.Join(line, ","))        level++    }    return strings.Join(lines, "\n")}var gNoMoreElementsError = errors.New("no more elements")

tDijkstraPathFinder.go

狄克斯特拉算法的实现

package dijkstratype tDijkstraPathFinder struct {}func newDijkstraPathFinder() IPathFinder {    return &tDijkstraPathFinder{}}func (me *tDijkstraPathFinder) FindPath(nodes []INode, lines []ILine, srcID string, dstID string) (bool,[]INode) {    // 节点索引    mapNodes := make(map[string]INode, 0)    for _,it := range nodes {        mapNodes[it.ID()] = it    }    srcNode, ok := mapNodes[srcID]    if !ok {        return false, nil    }    dstNode,ok := mapNodes[dstID]    if !ok {        return false, nil    }    // 边的索引    mapFromLines := make(map[string][]ILine, 0)    mapToLines := make(map[string][]ILine, 0)    for _, it := range lines {        if v,ok := mapFromLines[it.From()];ok {            mapFromLines[it.From()] = append(v, it)        } else {            mapFromLines[it.From()] = []ILine{ it }        }        if v,ok := mapToLines[it.To()];ok {            mapToLines[it.To()] = append(v, it)        } else {            mapToLines[it.To()] = []ILine{ it }        }    }    // 设置from节点的weight为0, 其余节点的weight为MaxWeight    for _,it := range nodes {        if it.ID() == srcID {            it.SetWeight(0)        } else {            it.SetWeight(MaxWeight)        }    }    // 将终点push到堆    heap := newArrayHeap(newNodeWeightComparator())    heap.Push(srcNode)    // 遍历候选节点    for heap.IsNotEmpty() {        _, top := heap.Pop()        from := top.(INode)        if from.ID() == dstID {            break        }        links, ok := mapFromLines[from.ID()]        if ok {            for _,line := range links {                if to,ok := mapNodes[line.To()];ok {                    if me.updateWeight(from, to, line) {                        n := heap.IndexOf(to)                        if n >= 0 {                            heap.ShiftUp(n)                        } else {                            heap.Push(to)                        }                    }                }            }        }    }    // 逆向查找最短门路    if dstNode.GetWeight() >= MaxWeight {        return false, nil    }    path := []INode{ dstNode }    current := dstNode    maxRound := len(lines)    for ;current != srcNode && maxRound > 0;maxRound-- {        linkedLines, _ := mapToLines[current.ID()]        for _,line := range linkedLines {            from, _ := mapNodes[line.From()]            if from.GetWeight() == current.GetWeight() - line.Weight() {                current = from                path = append(path, from)            }        }    }    if current != srcNode {        return false, nil    }    me.reverse(path)    return true, path}func (me *tDijkstraPathFinder) reverse(nodes []INode) {    for i,j := 0, len(nodes)-1;i < j;i,j=i+1,j-1 {        nodes[i], nodes[j] = nodes[j], nodes[i]    }}func (me *tDijkstraPathFinder) updateWeight(from INode, to INode, line ILine) bool {    w := me.min(from.GetWeight() + line.Weight(), to.GetWeight())    if to.GetWeight() > w {        to.SetWeight(w)        return true    }    return false}func (me *tDijkstraPathFinder) min(a, b int) int {    if a <= b {        return a    }    return b}var DijkstraPathFinder = newDijkstraPathFinder()

(end)