No.1 统计匹配检索规定的物品数量

解题思路

枚举、统计。

代码展现

class Solution {    public int countMatches(List<List<String>> items, String ruleKey, String ruleValue) {        int index = 0;        if (ruleKey.equals("color")) {            index = 1;        } else if (ruleKey.equals("name")) {            index = 2;        }        int count = 0;        for (var item : items) {            if (item.get(index).equals(ruleValue)) {                count++;            }        }        return count;    }}

No.2 最靠近指标价格的甜点老本

解题思路

递归搜寻即可,把所有的配比计划都枚举一遍。

代码展现

class Solution {    int answer;    public int closestCost(int[] baseCosts, int[] toppingCosts, int target) {        answer = 0x3f3f3f3f; // INF        for (int base : baseCosts) {            dfs(base, 0, toppingCosts, target);        }        return answer;    }    private void dfs(int sum, int idx, int[] toppingCosts, int target) {        if (sum - target > Math.abs(answer - target)) {            return;        }        if (idx == toppingCosts.length) {            int cur = Math.abs(sum - target);            int min = Math.abs(answer - target);            if (cur < min || (cur == min && sum < answer)) {                answer = sum;            }            return;        }        for (int i = 0; i < 3; i++) {            dfs(sum + toppingCosts[idx] * i, idx + 1, toppingCosts, target);        }    }}

No.3 通过起码操作次数使数组的和相等

解题思路

贪婪,每次挑跨度最大的数字操作。

代码展现

class Solution {    public int minOperations(int[] nums1, int[] nums2) {        // 无解状况判断        if (nums1.length > nums2.length * 6 || nums2.length > nums1.length * 6) {            return -1;        }        // 保障 nums1.sum > nums2.sum        if (Arrays.stream(nums1).sum() < Arrays.stream(nums2).sum()) {            int[] tmp = nums1;            nums1 = nums2;            nums2 = tmp;        }        int sum1 = Arrays.stream(nums1).sum();        int sum2 = Arrays.stream(nums2).sum();        int[] count1 = count(nums1);        int[] count2 = count(nums2);        int operationCount = 0;        // 将 nums1 中的数字变小,nums2 中的数字变大        while (sum1 > sum2) {            int i1 = lastNonZero(count1) + 1;            int i2 = firstNonZero(count2) + 1;            // 挑跨度大的那个数字进行操作            if (i1 - 1 > 6 - i2) {                int target = Math.max(1, i1 - (sum1 - sum2));                count1[i1 - 1]--;                count1[target - 1]++;                sum1 -= i1 - target;            } else {                int target = Math.min(6, i2 + (sum1 - sum2));                count2[i2 - 1]--;                count2[target - 1]++;                sum2 += target - i2;            }            operationCount++;        }        return operationCount;    }    private int lastNonZero(int[] arr) {        for (int i = arr.length - 1; i >= 0; i--) {            if (arr[i] != 0) {                return i;            }        }        return -1;    }    private int firstNonZero(int[] arr) {        for (int i = 0; i < arr.length; i++) {            if (arr[i] != 0) {                return i;            }        }        return -1;    }    private int[] count(int[] nums) {        int[] counts = new int[6];        for (int n : nums) {            counts[n - 1]++;        }        return counts;    }}

No.4 车队 II

解题思路

枯燥栈,详见正文。

代码展现

class Solution {    public double[] getCollisionTimes(int[][] cars) {        // 若 answer[i] > 0, 则 car i 必然会与前面的某辆车相遇        // 一辆车后面的车不会影响它的速度,即便相遇了,所以思考从后往前遍历        double[] answer = new double[cars.length];        // 枯燥栈,车速是枯燥递增的        LinkedList<Integer> stack = new LinkedList<>();        for (int i = cars.length - 1; i >= 0; i--) {            while (!stack.isEmpty()) {                if (cars[stack.getLast()][1] >= cars[i][1]) {                    // 栈顶更快,追不上,弹出                    stack.pollLast();                } else {                    if (answer[stack.peekLast()] < 0) {                        break;                    }                    double d = answer[stack.peekLast()] * (cars[i][1] - cars[stack.peekLast()][1]);                    if (d > cars[stack.peekLast()][0] - cars[i][0]) {                        break;                    } else {                        // 在追上前,前车曾经和它之前的车相遇,弹出                        stack.pollLast();                    }                }            }            if (stack.isEmpty()) {                answer[i] = -1;            } else {                answer[i] = (double) (cars[stack.peekLast()][0] - cars[i][0]) / (cars[i][1] - cars[stack.peekLast()][1]);            }            stack.addLast(i);        }        return answer;    }}