缘起

最近浏览<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采纳golang练习之

贝尔曼-福特算法

贝尔曼-福特(Bellman-Ford)算法是一种在图中求解最短门路问题的算法。最短门路问题就是在加权图指定了终点和起点的前提下,寻找从终点到起点的门路中权重总和最小的那条门路。摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一

流程

  1. 给定若干顶点, 以及顶点间的若干条边, 寻找从指定终点from到指定起点to的最小权重门路
  2. 设定from的权重为0, 其余顶点的权重为无穷大
  3. 将from节点送入候选队列
  4. for 候选队列不为空:

    1. 从候选队列出队一个顶点node
    2. 遍历从node登程的所有边, 将边的起点权重, 更新为min(起点权重, node.权重+边.权重)
    3. 如果起点权重 > node.权重+边.权重, 阐明更新无效, 则将起点push到候选队列
  5. 判断起点的权重是否被更新(!=无穷大), 如果是则阐明存在最短门路
  6. 反向查找最短门路:

    1. 设定以后节点current = 起点
    2. push节点current进门路队列
    3. 遍历起点为current的边, 查找符合条件的node:边的终点.权重 = current.权重-边.权重
    4. push节点node进门路队列
    5. 循环1-4, 直到current == from, 查找实现

指标

  • 实现并验证贝尔曼-福特算法

设计

  • INode: 顶点接口
  • ILine: 边接口
  • IPathFinder: 最短门路查找算法接口
  • iNodeQueue: 顶点队列接口, FIFO队列
  • tNode: 顶点, 实现INode
  • tLine: 边, 实现ILine
  • tFIFOQueue: FIFO节点队列的实现
  • tBellmanFoldFinder: 贝尔曼-福特算法的实现

单元测试

bellman_fold_test.go

package graphimport (    "fmt"    bf "learning/gooop/graph/bellman_fold"    "strings"    "testing")func Test_BellmanFold(t *testing.T) {    fnAssertTrue := func(b bool, msg string) {        if !b {            t.Fatal(msg)        }    }    nodes := []bf.INode{        bf.NewNode("a"),        bf.NewNode("b"),        bf.NewNode("c"),        bf.NewNode("d"),        bf.NewNode("e"),        bf.NewNode("f"),        bf.NewNode("g"),    }    lines := []bf.ILine {        bf.NewLine("a", "b", 9),        bf.NewLine("a", "c", 2),        bf.NewLine("b", "c", 6),        bf.NewLine("b", "d", 3),        bf.NewLine("b", "e", 1),        bf.NewLine("c", "d", 2),        bf.NewLine("c", "f", 9),        bf.NewLine("d", "e", 5),        bf.NewLine("d", "f", 6),        bf.NewLine("e", "f", 3),        bf.NewLine("e", "g", 7),        bf.NewLine("f", "g", 4),    }    for _,it := range lines[:] {        lines = append(lines, bf.NewLine(it.To(), it.From(), it.Weight()))    }    ok,path := bf.BellmanFoldFinder.FindPath(nodes, lines, "a", "g")    if !ok {        t.Fatal("failed to find min path")    }    fnPathToString := func(nodes []bf.INode) string {        items := make([]string, len(nodes))        for i,it := range nodes {            items[i] = fmt.Sprintf("%s", it)        }        return strings.Join(items, " ")    }    pathString := fnPathToString(path)    fnAssertTrue(pathString == "a(0) c(2) d(4) f(10) g(14)", "incorrect path")}

测试输入

$ go test -v bellman_fold_test.go === RUN   Test_BellmanFold    bellman_fold_test.go:63: a(0) c(2) d(4) f(10) g(14)--- PASS: Test_BellmanFold (0.00s)PASSok      command-line-arguments  0.002s

INode.go

顶点接口

package bellman_foldtype INode interface {    ID() string    GetWeight() int    SetWeight(int)}const MaxWeight = int(0x7fffffff_ffffffff)

ILine.go

边接口

package bellman_foldtype ILine interface {    From() string    To() string    Weight() int}

IPathFinder.go

最短门路查找算法接口

package bellman_foldtype IPathFinder interface {    FindPath(nodes []INode, lines []ILine, from string, to string) (bool,[]INode)}

iNodeQueue.go

顶点队列接口, FIFO队列

package bellman_foldtype iNodeQueue interface {    Clear()    Size() int    Empty() bool    Push(node INode)    Poll() (bool, INode)}

tNode.go

顶点, 实现INode

package bellman_foldimport "fmt"type tNode struct {    id string    weight int}func NewNode(id string) INode {    return &tNode{        id,MaxWeight,    }}func (me *tNode) ID() string {    return me.id}func (me *tNode) GetWeight() int {    return me.weight}func (me *tNode) SetWeight(w int) {    me.weight = w}func (me *tNode) String() string {    return fmt.Sprintf("%s(%v)", me.id, me.weight)}

tLine.go

边, 实现ILine

package bellman_foldtype tLine struct {    from string    to string    weight int}func NewLine(from string, to string, weight int) ILine {    return &tLine{        from,to,weight,    }}func (me *tLine) From() string {    return me.from}func (me *tLine) To() string {    return me.to}func (me *tLine) Weight() int {    return me.weight}

tFIFOQueue.go

FIFO节点队列的实现

package bellman_foldtype tFIFOQueue struct {    nodes []INode    capacity int    rindex int    windex int}func newFIFOQueue() iNodeQueue {    it := &tFIFOQueue{}    it.Clear()    return it}func (me *tFIFOQueue) Clear() {    me.nodes = make([]INode, 0)    me.capacity = 0    me.rindex = -1    me.windex = -1}func (me *tFIFOQueue) Size() int {    return me.windex - me.rindex}func (me *tFIFOQueue) Empty() bool {    return me.Size() <= 0}func (me *tFIFOQueue) Push(node INode) {    me.ensureSpace(1)    me.windex++    me.nodes[me.windex] = node}func (me *tFIFOQueue) ensureSpace(size int) {    for me.capacity < me.windex + size + 1 {        me.nodes = append(me.nodes, nil)        me.capacity++    }}func (me *tFIFOQueue) Poll() (bool, INode) {    if me.Empty() {        return false, nil    }    me.rindex++    it := me.nodes[me.rindex]    me.nodes[me.rindex] = nil    if me.rindex > me.capacity / 2 {        size := me.Size()        offset := me.rindex + 1        for i := 0;i < size;i++ {            me.nodes[i], me.nodes[i + offset] = me.nodes[i + offset], nil        }        me.rindex -= offset        me.windex -= offset    }    return true, it}

tBellmanFoldFinder.go

贝尔曼-福特算法的实现

package bellman_foldtype tBellmanFoldFinder struct {}func newBellmanFoldFinder() IPathFinder {    return &tBellmanFoldFinder{    }}func (me *tBellmanFoldFinder) FindPath(nodes []INode, lines []ILine, fromID string, toID string) (bool,[]INode) {    // 节点索引    mapNodes := make(map[string]INode, 0)    for _,it := range nodes {        mapNodes[it.ID()] = it    }    fromNode, ok := mapNodes[fromID]    if !ok {        return false, nil    }    toNode,ok := mapNodes[toID]    if !ok {        return false, nil    }    // 边的索引    mapFromLines := make(map[string][]ILine, 0)    mapToLines := make(map[string][]ILine, 0)    for _, it := range lines {        if v,ok := mapFromLines[it.From()];ok {            mapFromLines[it.From()] = append(v, it)        } else {            mapFromLines[it.From()] = []ILine{ it }        }        if v,ok := mapToLines[it.To()];ok {            mapToLines[it.To()] = append(v, it)        } else {            mapToLines[it.To()] = []ILine{ it }        }    }    // 设置from节点的weight为0, 其余节点的weight为MaxWeight    for _,it := range nodes {        if it.ID() == fromID {            it.SetWeight(0)        } else {            it.SetWeight(MaxWeight)        }    }    // 循环更新所有节点的权重 直到不再变动    fromNode.SetWeight(0)    queue := newFIFOQueue()    queue.Push(fromNode)    for !queue.Empty() {        ok,from := queue.Poll()        if !ok {            panic("unexpected !ok")        }        affectedLines, ok := mapFromLines[from.ID()]        if ok {            for _,line := range affectedLines {                if to,ok := mapNodes[line.To()];ok {                    if me.updateWeight(from, to, line) {                        queue.Push(to)                    }                }            }        }    }    // 逆向查找最短门路    if toNode.GetWeight() >= MaxWeight {        return false, nil    }    queue.Clear()    queue.Push(toNode)    current := toNode    maxRound := len(lines)    for ;current != fromNode && maxRound > 0;maxRound-- {        linkedLines, _ := mapToLines[current.ID()]        for _,line := range linkedLines {            from, _ := mapNodes[line.From()]            if from.GetWeight() == current.GetWeight() - line.Weight() {                current = from                queue.Push(from)            }        }    }    if current != fromNode {        return false, nil    }    // 返回    result := make([]INode, queue.Size())    for i := queue.Size() - 1;i >= 0;i-- {        _,result[i] = queue.Poll()    }    return true, result}func (me *tBellmanFoldFinder) updateWeight(from INode, to INode, line ILine) bool {    w := me.min(from.GetWeight() + line.Weight(), to.GetWeight())    if to.GetWeight() > w {        to.SetWeight(w)        return true    }    return false}func (me *tBellmanFoldFinder) min(a, b int) int {    if a <= b {        return a    }    return b}var BellmanFoldFinder = newBellmanFoldFinder()

(end)