后面一篇讲到streamin读取kafka数据加工解决后写到kafka数据,大数据开发-Spark-开发Streaming解决数据 && 写入Kafka是针对比方举荐畛域,实时标签等场景对于实时处理后果放到mysql也是一种罕用形式,假如一些车辆调度的地理位置信息处理后写入到mysql
1.阐明
数据表如下:
create database test;use test;DROP TABLE IF EXISTS car_gps;CREATE TABLE IF NOT EXISTS car_gps(deployNum VARCHAR(30) COMMENT '调度编号',plateNum VARCHAR(10) COMMENT '车牌号',timeStr VARCHAR(20) COMMENT '工夫戳',lng VARCHAR(20) COMMENT '经度',lat VARCHAR(20) COMMENT '纬度',dbtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT '数据入库工夫',PRIMARY KEY(deployNum, plateNum, timeStr))
2.编写程序
首先引入mysql的驱动
<dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.44</version> </dependency>
2.1 jdbc写入mysql
package com.hoult.Streaming.workimport java.sql.{Connection, DriverManager, PreparedStatement}import java.util.Propertiesimport com.hoult.structed.bean.BusInfoimport org.apache.spark.sql.ForeachWriterclass JdbcHelper extends ForeachWriter[BusInfo] { var conn: Connection = _ var statement: PreparedStatement = _ override def open(partitionId: Long, epochId: Long): Boolean = { if (conn == null) { conn = JdbcHelper.openConnection } true } override def process(value: BusInfo): Unit = { //把数据写入mysql表中 val arr: Array[String] = value.lglat.split("_") val sql = "insert into car_gps(deployNum,plateNum,timeStr,lng,lat) values(?,?,?,?,?)" statement = conn.prepareStatement(sql) statement.setString(1, value.deployNum) statement.setString(2, value.plateNum) statement.setString(3, value.timeStr) statement.setString(4, arr(0)) statement.setString(5, arr(1)) statement.executeUpdate() } override def close(errorOrNull: Throwable): Unit = { if (null != conn) conn.close() if (null != statement) statement.close() }}object JdbcHelper { var conn: Connection = _ val url = "jdbc:mysql://hadoop1:3306/test?useUnicode=true&characterEncoding=utf8" val username = "root" val password = "123456" def openConnection: Connection = { if (null == conn || conn.isClosed) { val p = new Properties Class.forName("com.mysql.jdbc.Driver") conn = DriverManager.getConnection(url, username, password) } conn }}
2.2 通过foreach来写入mysql
package com.hoult.Streaming.workimport com.hoult.structed.bean.BusInfoimport org.apache.spark.sql.{Column, DataFrame, Dataset, SparkSession}object KafkaToJdbc { def main(args: Array[String]): Unit = { System.setProperty("HADOOP_USER_NAME", "root") //1 获取sparksession val spark: SparkSession = SparkSession.builder() .master("local[*]") .appName(KafkaToJdbc.getClass.getName) .getOrCreate() spark.sparkContext.setLogLevel("WARN") import spark.implicits._ //2 定义读取kafka数据源 val kafkaDf: DataFrame = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "linux121:9092") .option("subscribe", "test_bus_info") .load() //3 解决数据 val kafkaValDf: DataFrame = kafkaDf.selectExpr("CAST(value AS STRING)") //转为ds val kafkaDs: Dataset[String] = kafkaValDf.as[String] //解析出经纬度数据,写入redis //封装为一个case class不便后续获取指定字段的数据 val busInfoDs: Dataset[BusInfo] = kafkaDs.map(BusInfo(_)).filter(_ != null) //将数据写入MySQL表 busInfoDs.writeStream .foreach(new JdbcHelper) .outputMode("append") .start() .awaitTermination() }}
2.4 创立topic和从消费者端写入数据
kafka-topics.sh --zookeeper linux121:2181/myKafka --create --topic test_bus_info --partitions 2 --replication-factor 1kafka-console-producer.sh --broker-list linux121:9092 --topic test_bus_info
吴邪,小三爷,混迹于后盾,大数据,人工智能畛域的小菜鸟。
更多请关注