前言
咱们晓得,CountDownLatch的计数器是一次性的,它不能重置。也就是说,当count值变为0时,再调用await()办法会立刻返回,不会阻塞。
本文要说的CyclicBarrier就是一种能够重置计数器的线程同步工具类。CyclicBarrier字面意思是“回环屏障”,它能够让一组线程全副达到一个状态后再全副同时往下执行。之所以叫回环是因为当所有线程执行结束,并重置CyclicBarrier的状态后它能够被重用。而之所以叫屏障是因为当某个线程调用await办法后就会被阻塞,这个阻塞点就称为屏障,等其余所有线程都调用了await办法后,这组线程就会一起冲破屏障,并往下执行。
应用场景
两个子工作别离执行本人的工作,等它们都执行完后,主工作汇总子工作的后果,并做一些解决,解决实现后两个子工作又持续做其余事件。示例代码:
import java.util.concurrent.BrokenBarrierException;import java.util.concurrent.CyclicBarrier;public class CyclicBarrierDemo { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> { try { System.out.println("main task merge subtask result begin"); // simulate merge work Thread.sleep(5000); System.out.println("main task merge subtask result finished"); } catch (InterruptedException e) { // ignore } }); public static void main(String[] args) { Thread thread1 = new Thread(() -> { try { Thread.sleep(4000); System.out.println("thread1 finished its work"); cyclicBarrier.await(); System.out.println("thread1 continue work"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); Thread thread2 = new Thread(() -> { try { Thread.sleep(5000); System.out.println("thread2 finished its work"); cyclicBarrier.await(); System.out.println("thread2 continue work"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); thread1.start(); thread2.start(); }}
输入后果:
能够看到,线程1和线程2调用await()时,会被阻塞,等主线程工作实现后,线程1和线程2就会冲破屏障,持续往下执行。这里的主线程合并工作是可选的,也就是说能够间接new CyclicBarric(int parties),这种状况下就没有达到屏障后的合并工作,会间接在全副线程达到屏障后同时冲破屏障往下执行。能够比喻成举办同学聚会的场景。有20集体加入团聚,第1集体达到集合地点后要等其他人,第2个,第3个,...第19集体也须要等,当最初一个人到的时候,全副的20集体就能够登程去嗨皮了。
下面介绍的是“屏障”的利用场景,再来看个“回环”的利用场景。
假如一个工作由阶段1,阶段2,阶段3这三个阶段组成,每个线程都串行的顺次执行阶段1,2,3。当多个线程执行工作时,必须保障等所有线程都执行完阶段1后,能力执行阶段2,同样地,也必须保障所有线程都执行完阶段2后,能力执行阶段3。示例代码:
import java.util.concurrent.BrokenBarrierException;import java.util.concurrent.CyclicBarrier;public class CyclicBarrierDemo2 { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2); public static void main(String[] args) { Thread thread1 = new Thread(() -> { try { System.out.println("thread1 step 1"); cyclicBarrier.await(); System.out.println("thread1 step 2"); cyclicBarrier.await(); System.out.println("thread1 step 3"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); Thread thread2 = new Thread(() -> { try { System.out.println("thread2 step 1"); cyclicBarrier.await(); System.out.println("thread2 step 2"); cyclicBarrier.await(); System.out.println("thread2 step 3"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); thread1.start(); thread2.start(); }}
输入后果如下:
能够看到,实现了这种同阶段期待的成果。
实现原理
先来看看重要属性:
private static class Generation { // 屏障是否被突破 boolean broken = false;}/** The lock for guarding barrier entry */private final ReentrantLock lock = new ReentrantLock();/** Condition to wait on until tripped */private final Condition trip = lock.newCondition();/** The number of parties */private final int parties;/* The command to run when tripped */private final Runnable barrierCommand;/** The current generation */private Generation generation = new Generation();/** * Number of parties still waiting. Counts down from parties to 0 on each generation. * It is reset to parties on each new generation or when broken. */private int count;
能够看到,CyclicBarrier里用了独占锁ReentrantLock实现多线程间的计数器同步,parties示意当多少个线程达到屏障后,冲破屏障往下执行,而count示意以后还残余多少个线程还未达到屏障,当所有线程都冲破屏障后,它又会在新一轮(new generation)被重置为parties的值。也就是说,count和Generation是用来实现重置成果的。
再看看构造方法的属性赋值:
public CyclicBarrier(int parties, Runnable barrierAction) { if (parties <= 0) throw new IllegalArgumentException(); this.parties = parties; this.count = parties; this.barrierCommand = barrierAction;}
再来看看要害办法:
await()
public int await() throws InterruptedException, BrokenBarrierException { try { // false示意不设置超时 return dowait(false, 0L); } catch (TimeoutException toe) { throw new Error(toe); // cannot happen }}
dowait()办法代码如下:
// timed:是否超时期待, nanos:超时工夫private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException { final ReentrantLock lock = this.lock; lock.lock(); try { final Generation g = generation; if (g.broken) throw new BrokenBarrierException(); if (Thread.interrupted()) { breakBarrier(); throw new InterruptedException(); } int index = --count; // 如果index为0,示意所有线程都已达到了屏障,此时去执行初始化时设定的barrierCommand(如果有的话) if (index == 0) { // tripped boolean ranAction = false; try { final Runnable command = barrierCommand; if (command != null) command.run(); ranAction = true; // 唤醒其余线程,并重置进行下一轮 nextGeneration(); // 返回 return 0; } finally { if (!ranAction) breakBarrier(); } } // 否则须要等其余线程都达到屏障 // loop until tripped, broken, interrupted, or timed out for (;;) { try { // 辨别超时期待与不超时期待 if (!timed) trip.await(); else if (nanos > 0L) nanos = trip.awaitNanos(nanos); } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { // We're about to finish waiting even if we had not // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. Thread.currentThread().interrupt(); } } if (g.broken) throw new BrokenBarrierException(); // g != generation 阐明被唤醒后已重置了轮次,阐明所有线程均已达到线程屏障,能够返回了。 if (g != generation) return index; // 期待超时,抛出超时异样 if (timed && nanos <= 0L) { breakBarrier(); throw new TimeoutException(); } } } finally { lock.unlock(); }}
其中,nextGeneration()办法如下:
private void nextGeneration() { // signal completion of last generation // 唤醒期待在trip条件(即屏障)上的其余所有线程 trip.signalAll(); // set up next generation // 重置count的值为初始值parties count = parties; // 重置以后轮次 generation = new Generation();}
参考资料:
《Java并发编程之美》