前言

在理论开发中,有时会遇到这样的场景:主工作须要期待若干子工作实现后,再进行后续的操作。这时能够用join或者本文的CountDownLatch实现。它们的区别在于CountDownLatch更加灵便。比方,子工作的工作分为两个阶段,主工作只需子工作实现第一个阶段即可开始主工作,无需等第二个阶段实现。这种场景join就无奈做到,CountDownLatch就能够实现。上面是实例代码。

import java.util.concurrent.CountDownLatch;public class CountDownLatchDemo {    public static void main(String[] args) throws InterruptedException {        CountDownLatch countDownLatch = new CountDownLatch(2);        Worker worker1 = new Worker("worker1", countDownLatch);        Worker worker2 = new Worker("worker2", countDownLatch);        worker1.start();        worker2.start();        System.out.println("main task wait for work1 and work2 finish their stage 1");        countDownLatch.await();        System.out.println("main task begin to work");        Thread.sleep(3000);        System.out.println("main task finished");    }        static class Worker extends Thread {        private final CountDownLatch count;        public Worker(String name, CountDownLatch count) {            super.setName(name);            this.count = count;        }        @Override        public void run() {            try {               Thread.sleep(5000);               System.out.println(Thread.currentThread().getName() + " stage 1 finished");               count.countDown();               Thread.sleep(5000);               System.out.println(Thread.currentThread().getName() + " stage 2 finished");            } catch (InterruptedException e) {                // ignore            }        }    }}

运行后果如下:

主线程期待work1和work2实现它们的第一个阶段工作后,就开始工作,无需期待第二个阶段也实现。而join只能期待子线程整个run()执行结束能力往后执行,因而CountDownLatch更加灵便。

实现原理

从CountDownLatch的命名可猜想,它外部应该用了一个计数器,每当子线程调用countDown()办法时,计数器就减1,减到0时,主线程就会从调用await()阻塞处昏迷返回。

先来看看构造方法:

public CountDownLatch(int count) {    if (count < 0) throw new IllegalArgumentException("count < 0");    this.sync = new Sync(count);}

其中Sync是它的外部类,实现了AQS接口。

private static final class Sync extends AbstractQueuedSynchronizer {    private static final long serialVersionUID = 4982264981922014374L;    Sync(int count) {        setState(count);    }    int getCount() {        return getState();    }    protected int tryAcquireShared(int acquires) {        // 计数器为0,则获取锁胜利,能够从await()返回        // 否则须要期待        return (getState() == 0) ? 1 : -1;    }    protected boolean tryReleaseShared(int releases) {        // Decrement count; signal when transition to zero        for (;;) {            int c = getState();            if (c == 0)                return false;            // 计数器减1            int nextc = c-1;            if (compareAndSetState(c, nextc))                // 减到0时会unpark唤醒阻塞在await()的线程                return nextc == 0;        }    }}

能够看到,它是一个共享锁实现,多个线程通过Sync来同步计数器count的值。

再来看罕用的await()和countDown()办法:

public void await() throws InterruptedException {    sync.acquireSharedInterruptibly(1);}

await()调用的是AQS中的模板办法:

public final void acquireSharedInterruptibly(int arg)        throws InterruptedException {    if (Thread.interrupted())        throw new InterruptedException();    // 调用子类Sync的tryAcquireShared办法,如果共享式获取锁失败,doAcquireSharedInterruptibly外面会让以后线程在队列里阻塞期待获取锁。    if (tryAcquireShared(arg) < 0)        doAcquireSharedInterruptibly(arg);}
public void countDown() {    sync.releaseShared(1);}

countDown调用的也是AQS中的模板办法:

public final boolean releaseShared(int arg) {    // 调用子类Sync的tryReleaseShared()共享式地开释锁,    // 计数器减为0时,doReleaseShared外面会唤醒期待在await()办法处的线程。    if (tryReleaseShared(arg)) {        doReleaseShared();        return true;     }    return false;}

参考资料:
《Java并发编程之美》