window 临界区

  • window 临界区资源对象与C++的 std::mutex 对象相似,能够爱护多个线程对临界区资源的拜访。
#include <iostream>#include <thread>#include <Windows.h>static CRITICAL_SECTION g_winsec;void print_block (int n, char c){  EnterCriticalSection(&g_winsec);      // 2. 进入临界区  for (int i=0; i<n; ++i) {      std::cout << c;  }  std::cout << '\n';  LeaveCriticalSection(&g_winsec);      // 3. 来到临界区}int main (){  InitializeCriticalSection(&g_winsec); // 1. 初始化临界资源对象  std::thread th1 (print_block,50,'*');  std::thread th2 (print_block,50,'$');  th1.join();  th2.join();  return 0;}

输入:

**************************************************$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

屡次进入临界区试验

  • window 临界资源对象能够在同一线程中多次重复进入,对应次数的来到,程序仍失常执行。
  • std::mutex 对象只能在同一线程进行一次加锁并对应一次解锁,否则程序抛出异样。

测试1:window 临界区

#include <iostream>#include <thread>#include <Windows.h>static CRITICAL_SECTION g_winsec;void print_block (int n, char c){  EnterCriticalSection(&g_winsec);      // 2. 进入临界区  EnterCriticalSection(&g_winsec);      // 屡次进入 。。。  EnterCriticalSection(&g_winsec);      // 屡次进入 。。。  for (int i=0; i<n; ++i) {      std::cout << c;  }  std::cout << '\n';  LeaveCriticalSection(&g_winsec);      // 3. 来到临界区  LeaveCriticalSection(&g_winsec);      // 屡次来到 。。。  LeaveCriticalSection(&g_winsec);      // 屡次来到 。。。}int main (){  InitializeCriticalSection(&g_winsec); // 1. 初始化临界资源对象  std::thread th1 (print_block,50,'*');  std::thread th2 (print_block,50,'$');  th1.join();  th2.join();  return 0;}

输入:[后果正确]

**************************************************$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

测试2:std::mutex

// mutex example#include <iostream>       // std::cout#include <thread>         // std::thread#include <mutex>          // std::mutexstd::mutex mtx;           // mutex for critical sectionvoid print_block (int n, char c) {  // critical section (exclusive access to std::cout signaled by locking mtx):  mtx.lock();  mtx.lock();  mtx.lock();  for (int i=0; i<n; ++i) { std::cout << c; }  std::cout << '\n';  mtx.unlock();  mtx.unlock();  mtx.unlock();}int main (){  std::thread th1 (print_block,50,'*');  std::thread th2 (print_block,50,'$');  th1.join();  th2.join();  return 0;}

输入:

程序异样退出

主动析构技术

  • RAII(Resource Acquisition Is Initialization),也称为“资源获取就是初始化”,是C++语言的一种治理资源、防止透露的习用法。
  • C++规范保障任何状况下,已结构的对象最终会销毁,即它的析构函数最终会被调用。简略的说,RAII 的做法是应用一个对象,在其结构时获取资源,在对象生命期管制对资源的拜访使之始终保持无效,最初在对象析构的时候开释资源。
#include <iostream>#include <thread>#include <Windows.h>static CRITICAL_SECTION g_winsec;class CWinLock {public:    CWinLock(CRITICAL_SECTION *winsec) : m_winsec(winsec)    {         EnterCriticalSection(m_winsec); // 进入临界区    }    ~CWinLock()    {        LeaveCriticalSection(m_winsec);  // 来到临界区    }private:    CRITICAL_SECTION *m_winsec = nullptr;};void print_block (int n, char c){  CWinLock win_lock(&g_winsec);  for (int i=0; i<n; ++i) {      std::cout << c;  }  std::cout << '\n';}int main (){  InitializeCriticalSection(&g_winsec); // 1. 初始化临界资源对象  std::thread th1 (print_block,50,'*');  std::thread th2 (print_block,50,'$');  th1.join();  th2.join();  return 0;}

输入:

**************************************************$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

std::recursive_mutex

  • 就像互斥锁(mutex)一样,递归互斥锁(recursive_mutex)是可锁定的对象,但它容许同一线程取得对互斥锁对象的多级所有权(屡次lock)。
  • 这容许从曾经锁定它的线程锁定(或尝试锁定)互斥对象,从而取得对互斥对象的新所有权级别:互斥对象实际上将放弃对该线程的锁定,直到调用其成员 unlock 的次数与此所有权级别的次数雷同。
try_lock如果没有被其它线程锁定,则锁定互斥锁
unlock解锁互斥锁

测试:仅演示阐明,应用 recursive_mutex 时需思考是否存在优化空间!

#include <iostream>#include <thread>#include <mutex> std::recursive_mutex mtx;           void print_block (int n, char c) {  mtx.lock();  mtx.lock();  mtx.lock();    for (int i=0; i<n; ++i) { std::cout << c; }  std::cout << '\n';    mtx.unlock();  mtx.unlock();  mtx.unlock();}int main (){  std::thread th1 (print_block,50,'*');  std::thread th2 (print_block,50,'$');  th1.join();  th2.join();  return 0;}

输入:

**************************************************$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

std::timed_mutex、std::recursive_timed_mutex

std::timed_mutex

  • 定时互斥锁是一个可工夫锁定的对象,旨在告诉何时要害代码须要独占拜访,就像惯例互斥锁一样,但还反对定时尝试锁定申请。
lock调用线程将锁定timed_mutex,并在必要时进行阻塞(其行为与 mutex 完全相同)
try_lock尝试锁定 timed_mutex,而不进行阻塞(其行为与互斥锁完全相同)
try_lock_for尝试锁定 timed_mutex, 最多阻塞 rel_time 工夫
try_lock_until尝试锁定 timed_mutex,最多阻塞到 abs_time 工夫点
unlock解锁 timed_mutex,开释对其的所有权(其行为与 mutex 雷同)

测试1: try_lock_for

// timed_mutex::try_lock_for example#include <iostream>       // std::cout#include <chrono>         // std::chrono::milliseconds#include <thread>         // std::thread#include <mutex>          // std::timed_mutexstd::timed_mutex mtx;void fireworks () {  // waiting to get a lock: each thread prints "-" every 200ms:  while (!mtx.try_lock_for(std::chrono::milliseconds(200))) {    std::cout << "-";  }  // got a lock! - wait for 1s, then this thread prints "*"  std::this_thread::sleep_for(std::chrono::milliseconds(1000));  std::cout << "*\n";  mtx.unlock();}int main (){  std::thread threads[10];  // spawn 10 threads:  for (int i=0; i<10; ++i)    threads[i] = std::thread(fireworks);  for (auto& th : threads) th.join();  return 0;}

输入:

------------------------------------*----------------------------------------*-----------------------------------*------------------------*-------------------------*--------------------*---------------*--------*-----**

测试2:try_lock_until

// timed_mutex::try_lock_until example#include <iostream>       // std::cout#include <chrono>         // std::chrono::system_clock#include <thread>         // std::thread#include <mutex>          // std::timed_mutex#include <ctime>          // std::time_t, std::tm, std::localtime, std::mktimestd::timed_mutex cinderella;// gets time_point for next midnight:std::chrono::time_point<std::chrono::system_clock> midnight() {  using std::chrono::system_clock;  std::time_t tt = system_clock::to_time_t (system_clock::now());  struct std::tm * ptm = std::localtime(&tt);  ++ptm->tm_mday; ptm->tm_hour=0; ptm->tm_min=0; ptm->tm_sec=0;  return system_clock::from_time_t (mktime(ptm));}void carriage() {  if (cinderella.try_lock_until(midnight())) {    std::cout << "ride back home on carriage\n";    cinderella.unlock();  }  else    std::cout << "carriage reverts to pumpkin\n";}void ball() {  cinderella.lock();  std::cout << "at the ball...\n";  cinderella.unlock();}int main (){  std::thread th1 (ball);  std::thread th2 (carriage);  th1.join();  th2.join();  return 0;}

输入:

at the ball...ride back home on carriage

std::recursive_timed_mutex

  • 递归定时互斥锁将 recursive_timed 和 timed_mutex 的性能联合到一个类中:它既反对通过单个线程获取多个锁定级别又反对定时的 try_lock 申请。
  • 成员函数与 timed_mutex 雷同。