本文首发于微信公众号【WriteOnRead】,欢送关注。

1. 概述

前文「JDK源码剖析-AbstractQueuedSynchronizer(2)」剖析了 AQS 在独占模式下获取资源的流程,本文剖析共享模式下的相干操作。

其实二者的操作大部分是相似的,了解了后面对独占模式的剖析,再剖析共享模式就绝对容易了。

2. 共享模式

2.1 办法概述

与独占模式相似,共享模式下也有与之类似的相应操作,别离如下:

  1. acquireShared(int arg): 以共享模式获取资源,疏忽中断;
  2. acquireSharedInterruptibly(int arg): 以共享模式获取资源,响应中断;
  3. tryAcquireSharedNanos(int arg, long nanosTimeout): 以共享模式获取资源,响应中断,且有超时期待;
  4. releaseShared(int arg): 开释资源,唤醒后继节点,并确保流传。

它们的操作与独占模式也比拟相似,上面具体分析。

2.2 办法剖析

2.2.1 共享模式获取资源(疏忽中断)

acquireShared:

public final void acquireShared(int arg) {    // 返回值小于 0,示意获取失败    if (tryAcquireShared(arg) < 0)        doAcquireShared(arg);}// 尝试以共享模式获取资源(返回值为 int 类型)protected int tryAcquireShared(int arg) {    throw new UnsupportedOperationException();}

与独占模式的 tryAcquire 办法相似,tryAcquireShared 办法在 AQS 中也抛出异样,由子类实现其逻辑。

不同的中央在于,tryAcquire 办法的返回后果是 boolean 类型,示意获取胜利与否;而 tryAcquireShared 的返回后果是 int 类型,别离为:

  1. 正数:示意获取失败;
  2. 零:示意获取胜利,但后续共享模式的获取会失败;
  3. 负数:示意获取胜利,后续共享模式的获取可能会胜利(须要进行检测)。

若 tryAcquireShared 获取胜利,则间接返回;否则执行 doAcquireShared 办法:

private void doAcquireShared(int arg) {    // 把以后线程封装成共享模式的 Node 节点,插入主队列开端    final Node node = addWaiter(Node.SHARED);    boolean failed = true;    try {        // 中断标记位        boolean interrupted = false;        for (;;) {            final Node p = node.predecessor();            // 若前驱节点为头节点,则尝试获取资源            if (p == head) {                int r = tryAcquireShared(arg);                // 这里示意以后线程胜利获取到了资源                if (r >= 0) {                    // 设置头节点,并流传状态(留神这里与独占模式不同)                    setHeadAndPropagate(node, r);                    p.next = null; // help GC                    if (interrupted)                        selfInterrupt();                    failed = false;                    return;                }            }            // 是否应该休眠(与独占模式雷同,不再赘述)            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                interrupted = true;        }    } finally {        if (failed)            // 勾销操作(与独占模式雷同)            cancelAcquire(node);    }}

doAcquireShared 办法会把以后线程封装成一个共享模式(SHARED)的节点,并插入主队列开端。addWaiter(Node mode) 办法前文曾经剖析过,不再赘述。

该办法与 acquireQueued 办法的区别在于 setHeadAndPropagate 办法,把以后节点设置为头节点之后,还会有流传(propagate)行为:

private void setHeadAndPropagate(Node node, int propagate) {    // 记录旧的头节点    Node h = head; // Record old head for check below    // 将 node 设置为头节点    setHead(node);    /*     * Try to signal next queued node if:     *   Propagation was indicated by caller,     *     or was recorded (as h.waitStatus either before     *     or after setHead) by a previous operation     *     (note: this uses sign-check of waitStatus because     *      PROPAGATE status may transition to SIGNAL.)     * and     *   The next node is waiting in shared mode,     *     or we don't know, because it appears null     *     * The conservatism in both of these checks may cause     * unnecessary wake-ups, but only when there are multiple     * racing acquires/releases, so most need signals now or soon     * anyway.     */    if (propagate > 0 || h == null || h.waitStatus < 0 ||        (h = head) == null || h.waitStatus < 0) {        Node s = node.next;        // 后继节点为空或共享模式唤醒        if (s == null || s.isShared())            doReleaseShared();    }}

doReleaseShared:

private void doReleaseShared() {    /*     * Ensure that a release propagates, even if there are other     * in-progress acquires/releases.  This proceeds in the usual     * way of trying to unparkSuccessor of head if it needs     * signal. But if it does not, status is set to PROPAGATE to     * ensure that upon release, propagation continues.     * Additionally, we must loop in case a new node is added     * while we are doing this. Also, unlike other uses of     * unparkSuccessor, we need to know if CAS to reset status     * fails, if so rechecking.     */    for (;;) {        // 这里的头节点曾经是下面设置后的头节点了        Node h = head;        // 因为该办法有两个入口(setHeadAndPropagate 和 releaseShared),需思考并发管制        if (h != null && h != tail) {            int ws = h.waitStatus;            if (ws == Node.SIGNAL) {                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))                    continue;            // loop to recheck cases                // 唤醒后继节点                unparkSuccessor(h);            }            else if (ws == 0 &&                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))                continue;                // loop on failed CAS        }        // 若头节点不变,则跳出循环;否则持续循环        if (h == head)                   // loop if head changed            break;    }}

该办法与独占模式下的获取办法 acquire 大体类似,不同在于该办法中,节点获取资源后会流传状态,即,有可能会持续唤醒后继节点。值得注意的是:该办法有两个入口 setHeadAndPropagate 和 releaseShared,可能有多个线程操作,需思考并发管制。

此外,自己对于将节点设置为 PROPAGATE 状态的了解还不是很清晰,网上说法也不止一种,待后续钻研明确再补充。

2.2.2 以共享模式获取资源(响应中断)

该办法与 acquireShared 相似:

public final void acquireSharedInterruptibly(int arg)        throws InterruptedException {    if (Thread.interrupted())        throw new InterruptedException();    if (tryAcquireShared(arg) < 0)        doAcquireSharedInterruptibly(arg);}

tryAcquireShared 办法后面已剖析,若获取资源失败,则会执行 doAcquireSharedInterruptly 办法:

private void doAcquireSharedInterruptibly(int arg)    throws InterruptedException {    // 把以后线程封装成共享模式节点,并插入主队列    final Node node = addWaiter(Node.SHARED);    boolean failed = true;    try {        for (;;) {            final Node p = node.predecessor();            if (p == head) {                int r = tryAcquireShared(arg);                if (r >= 0) {                    setHeadAndPropagate(node, r);                    p.next = null; // help GC                    failed = false;                    return;                }            }            // 与 doAcquireShared 相比,区别在于这里抛出了异样            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                throw new InterruptedException();        }    } finally {        if (failed)            cancelAcquire(node);    }}

从代码能够看到,acquireSharedInterruptibly 办法与 acquireShared 办法简直齐全一样,不同之处仅在于前者会抛出 InterruptedException 异样响应中断;而后者仅记录标记位,获取完结后才响应。

2.2.3 以共享模式获取资源(响应中断,且有超时)

代码如下(该办法可与前文独占模式下的超时获取办法比拟剖析):

public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)        throws InterruptedException {    if (Thread.interrupted())        throw new InterruptedException();    return tryAcquireShared(arg) >= 0 ||        doAcquireSharedNanos(arg, nanosTimeout);}

doAcquireSharedNanos:

private boolean doAcquireSharedNanos(int arg, long nanosTimeout)        throws InterruptedException {    if (nanosTimeout <= 0L)        return false;    final long deadline = System.nanoTime() + nanosTimeout;    final Node node = addWaiter(Node.SHARED);    boolean failed = true;    try {        for (;;) {            final Node p = node.predecessor();            if (p == head) {                int r = tryAcquireShared(arg);                if (r >= 0) {                    setHeadAndPropagate(node, r);                    p.next = null; // help GC                    failed = false;                    return true;                }            }            nanosTimeout = deadline - System.nanoTime();            if (nanosTimeout <= 0L)                return false;            if (shouldParkAfterFailedAcquire(p, node) &&                nanosTimeout > spinForTimeoutThreshold)                LockSupport.parkNanos(this, nanosTimeout);            if (Thread.interrupted())                throw new InterruptedException();        }    } finally {        if (failed)            cancelAcquire(node);    }}

该办法可与独占模式下的超时期待办法 tryAcquireNanos(int arg, long nanosTimeout) 进行比照,二者操作基本一致,不再详细分析。

2.2.4 开释资源,唤醒节点,流传状态

如下:

public final boolean releaseShared(int arg) {    if (tryReleaseShared(arg)) {        doReleaseShared();        return true;    }    return false;}

tryReleaseShared:

protected boolean tryReleaseShared(int arg) {    throw new UnsupportedOperationException();}

doReleaseShared() 办法后面曾经剖析过了。本办法与独占模式的 release 办法相似,不同的中央在于“流传”二字。

3. 场景剖析

为了便于了解独占模式和共享模式下队列和节点的状态,上面简要举例剖析。

场景如下:有 T0~T4 共 5 个线程按先后顺序获取资源,其中 T2 和 T3 为共享模式,其余均为独占模式。

就此场景剖析:T0 先获取到资源(假如占用工夫较长),而后 T1~T4 再获取则失败,会顺次进入主队列。此时主队列中各个节点的状态示意图如下:

之后,T0 操作结束并开释资源,会将 T1 唤醒。T1(独占模式) 会从 acquireQueued(final Node node, int arg) 办法的循环中持续获取资源,这时会获取胜利,并将 T1 设置为头节点(T 被移除)。此时主队列节点示意图如下:

此时,T1 获取到资源并进行相干操作。

而后,T1 操作完开释资源,并唤醒下一个节点 T2,T2(共享模式) 持续从 doAcquireShared(int) 办法的循环中执行。此时 T2 获取资源胜利,将本身设为头节点(T1 被移除),因为后继节点 T3 也是共享模式,因而 T1 会持续唤醒 T3;T3 唤醒后的操作与 T2 雷同,但后继节点 T4 不是共享模式,因而不再持续唤醒。此时队列节点状态示意图如下:

此时,T2 和 T3 同时获取到资源。

之后,当二者都开释资源后会唤醒 T4:

T4 获取资源的与 T1 相似。

PS: 该场景仅供参考,只为便于了解,若有不当之处敬请斧正。

4. 小结

本文剖析了以共享模式获取资源的三种形式,以及开释资源的操作。别离为:

  1. acquireShared: 共享模式获取资源,疏忽中断;
  2. acquireSharedInterruptibly: 共享模式获取资源,响应中断;
  3. tryAcquireSharedNanos: 共享模式获取资源,响应中断,有超时;
  4. releaseShared: 开释资源,唤醒后继节点,并确保流传。

并简要剖析一个场景下主队列中各个节点的状态。此外,AQS 中还有嵌套类 ConditionObject 及条件队列的相干操作,前面波及到的时候再进行剖析。

独自去剖析 AQS 的源码比拟干燥,后文会联合 ReentrantLock、CountdownLatch 等罕用并发工具类的源码进行剖析。

上述解析是参考其余材料及集体了解,若有不当之处欢送斧正。

相干浏览:

JDK源码剖析-AbstractQueuedSynchronizer(1)

JDK源码剖析-AbstractQueuedSynchronizer(2)