1.Spark Streaming简介
Spark Streaming从各种输出源中读取数据,并把数据分组为小的批次。新的批次按平均的工夫距离创立进去。在每个工夫区间开始的时候,一个新的批次就创立进去,在该区间内收到的数据都会被增加到这个批次中。在工夫区间完结时,批次进行增长,工夫区间的大小是由批次距离这个参数决定的。批次距离个别设在500毫秒到几秒之间,由开发者配置。每个输出批次都造成一个RDD,以 Spark 作业的形式解决并生成其余的 RDD。 解决的后果能够以批处理的形式传给内部零碎,Spark Streaming的编程形象是离散化流,也就是DStream。它是一个 RDD 序列,每个RDD代表数据流中一个工夫片内的数据。另外退出了窗口操作和状态转化,其余和批次解决相似。
与StructedStreaming的区别
StructedStreaming诞生于2.x后,次要用于解决结构化数据,除了实现与Spark Streaming的批处理,还实现了long-running的task,次要了解为解决的机会能够是数据的生产工夫,而非收到数据的工夫,能够细看下表:
流解决模式 | SparkStreaming | Structed Streaming |
---|---|---|
执行模式 | Micro Batch | Micro batch / Streaming |
API | Dstream/streamingContext | Dataset/DataFrame,SparkSession |
Job 生成形式 | Timer定时器定时生成job | Trigger触发 |
反对数据源 | Socket,filstream,kafka,zeroMq,flume,kinesis | Socket,filstream,kafka,ratesource |
executed-based | Executed based on dstream api | Executed based on sparksql |
Time based | Processing Time | ProcessingTime & eventTIme |
UI | Built-in | No |
对于流解决,当初生产环境下应用Flink较多,数据源形式,当初根本是以kafka为主,所以本文对Spark Streaming的场景即ETL流解决结构化日志,将后果输出Kafka队列
2.Spark Sreaming的运行流程
1、客户端提交Spark Streaming作业后启动Driver,Driver启动Receiver,Receiver接收数据源的数据
2、每个作业蕴含多个Executor,每个Executor以线程的形式运行task,SparkStreaming至多蕴含一个receiver task(个别状况下)
3、Receiver接收数据后生成Block,并把BlockId汇报给Driver,而后备份到另外一个 Executor 上
4、ReceiverTracker保护 Reciver 汇报的BlockId
5、Driver定时启动JobGenerator,依据Dstream的关系生成逻辑RDD,而后创立Jobset,交给JobScheduler
6、JobScheduler负责调度Jobset,交给DAGScheduler,DAGScheduler依据逻辑RDD,生成相应的Stages,每个stage蕴含一到多个Task,将TaskSet提交给TaskSchedule
7、TaskScheduler负责把 Task 调度到 Executor 上,并保护 Task 的运行状态
罕用数据源的读取形式
常数据流:
val rdd: RDD[String] = ssc.sparkContext.makeRDD(strArray) val wordDStream: ConstantInputDStream[String] = new ConstantInputDStream(ssc, rdd)
Socket:
val rdd: RDD[String] = ssc.sparkContext.makeRDD(strArray) val wordDStream: ConstantInputDStream[String] = new ConstantInputDStream(ssc, rdd)
RDD队列:
val queue = new Queue[RDD[Int]]() val queueDStream: InputDStream[Int] = ssc.queueStream(queue)
文件夹:
val lines: DStream[String] = ssc.textFileStream("data/log/")
3.案例阐明
生产上,罕用流程如下,批处理原始Kafka日志,比方申请打点日志等,应用Spark Streaming来将数据荡涤转变为肯定格局再导入Kafka中,为了保障exact-once,会将offer本人来保留,次要保留在redis-offset中
数据地址:链接:https://pan.baidu.com/s/1FmFxSrPIynO3udernLU0yQ提取码:hell
3.1 原始Kafka日志
sample.log格局如下:
咱们将它先放到文件里,模仿生产环境下xx.log
3.2 创立两个topic,并创立KafkaProducer来嫁给你数据写入mytopic1
一个用来放原始的日志数据,一个用来放解决过后的日志
kafka-topics.sh --zookeeper localhost:2181/myKafka --create --topic mytopic1 --partitions 1 --replication-factor 1kafka-topics.sh --zookeeper localhost:2181/myKafka --create --topic mytopic2 --partitions 1 --replication-factor 1
启动redis服务:
./redis-server redis.conf
查看mytopic1数据
kafka-console-consumer.sh --bootstrap-server linux121:9092 --topic mytopic1 --from-beginning
3.3 代码实现
第一局部,解决原始文件数据写入mytopic1
package com.hoult.Streaming.workimport java.util.Propertiesimport org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}import org.apache.kafka.common.serialization.StringSerializerimport org.apache.log4j.{Level, Logger}import org.apache.spark.rdd.RDDimport org.apache.spark.{SparkConf, SparkContext}object FilerToKafka { def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.ERROR) val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]") val sc = new SparkContext(conf) // 定义 kafka producer参数 val lines: RDD[String] = sc.textFile("data/sample.log") // 定义 kafka producer参数 val prop = new Properties() prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux121:9092") prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) // 将读取到的数据发送到mytopic1 lines.foreachPartition{iter => // KafkaProducer val producer = new KafkaProducer[String, String](prop) iter.foreach{line => val record = new ProducerRecord[String, String]("mytopic1", line) producer.send(record) } producer.close() } }}
第二局部,streaming读取mytopic1的数据,写入mytopic2
package com.hoult.Streaming.workimport java.util.Propertiesimport com.hoult.Streaming.kafka.OffsetsWithRedisUtilsimport org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}import org.apache.log4j.{Level, Logger}import org.apache.spark.SparkConfimport org.apache.spark.streaming.dstream.InputDStreamimport org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange}import org.apache.spark.streaming.{Seconds, StreamingContext}/** * 每秒解决Kafka数据,生成结构化数据,输出另外一个Kafka topic */object KafkaStreamingETL { val log = Logger.getLogger(this.getClass) def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.ERROR) val conf = new SparkConf().setAppName(this.getClass.getCanonicalName).setMaster("local[*]") val ssc = new StreamingContext(conf, Seconds(5)) // 须要生产的topic val topics: Array[String] = Array("mytopic1") val groupid = "mygroup1" // 定义kafka相干参数 val kafkaParams: Map[String, Object] = getKafkaConsumerParameters(groupid) // 从Redis获取offset val fromOffsets = OffsetsWithRedisUtils.getOffsetsFromRedis(topics, groupid) // 创立DStream val dstream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream( ssc, LocationStrategies.PreferConsistent, // 从kafka中读取数据 ConsumerStrategies.Subscribe[String, String](topics, kafkaParams, fromOffsets) ) // 转换后的数据发送到另一个topic dstream.foreachRDD{rdd => if (!rdd.isEmpty) { val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges rdd.foreachPartition(process) // 将offset保留到Redis OffsetsWithRedisUtils.saveOffsetsToRedis(offsetRanges, groupid) } } // 启动作业 ssc.start() ssc.awaitTermination() } def process(iter: Iterator[ConsumerRecord[String, String]]) = { iter.map(line => parse(line.value)) .filter(!_.isEmpty)// .foreach(println) .foreach(line =>sendMsg2Topic(line, "mytopic2")) } def parse(text: String): String = { try{ val arr = text.replace("<<<!>>>", "").split(",") if (arr.length != 15) return "" arr.mkString("|") } catch { case e: Exception => log.error("解析数据出错!", e) "" } } def getKafkaConsumerParameters(groupid: String): Map[String, Object] = { Map[String, Object]( ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux121:9092", ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer], ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer], ConsumerConfig.GROUP_ID_CONFIG -> groupid, ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> (false: java.lang.Boolean), ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest" ) } def getKafkaProducerParameters(): Properties = { val prop = new Properties() prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux121:9092") prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop } def sendMsg2Topic(msg: String, topic: String): Unit = { val producer = new KafkaProducer[String, String](getKafkaProducerParameters()) val record = new ProducerRecord[String, String](topic, msg) producer.send(record) }}
第三局部,从redis中读写offset的工具
package com.hoult.Streaming.kafkaimport java.utilimport org.apache.kafka.common.TopicPartitionimport org.apache.spark.streaming.kafka010.OffsetRangeimport redis.clients.jedis.{Jedis, JedisPool, JedisPoolConfig}import scala.collection.mutableobject OffsetsWithRedisUtils { // 定义Redis参数 private val redisHost = "linux121" private val redisPort = 6379 // 获取Redis的连贯 private val config = new JedisPoolConfig // 最大闲暇数 config.setMaxIdle(5) // 最大连接数 config.setMaxTotal(10) private val pool = new JedisPool(config, redisHost, redisPort, 10000) private def getRedisConnection: Jedis = pool.getResource private val topicPrefix = "kafka:topic" // Key:kafka:topic:TopicName:groupid private def getKey(topic: String, groupid: String) = s"$topicPrefix:$topic:$groupid" // 依据 key 获取offsets def getOffsetsFromRedis(topics: Array[String], groupId: String): Map[TopicPartition, Long] = { val jedis: Jedis = getRedisConnection val offsets: Array[mutable.Map[TopicPartition, Long]] = topics.map { topic => val key = getKey(topic, groupId) import scala.collection.JavaConverters._ jedis.hgetAll(key) .asScala .map { case (partition, offset) => new TopicPartition(topic, partition.toInt) -> offset.toLong } } // 偿还资源 jedis.close() offsets.flatten.toMap } // 将offsets保留到Redis中 def saveOffsetsToRedis(offsets: Array[OffsetRange], groupId: String): Unit = { // 获取连贯 val jedis: Jedis = getRedisConnection // 组织数据 offsets.map{range => (range.topic, (range.partition.toString, range.untilOffset.toString))} .groupBy(_._1) .foreach{case (topic, buffer) => val key: String = getKey(topic, groupId) import scala.collection.JavaConverters._ val maps: util.Map[String, String] = buffer.map(_._2).toMap.asJava // 保留数据 jedis.hmset(key, maps) } jedis.close() } def main(args: Array[String]): Unit = { val topics = Array("mytopic1") val groupid = "mygroup1" val x: Map[TopicPartition, Long] = getOffsetsFromRedis(topics, groupid) x.foreach(println) }}
3.4 演示
- 启动redis
./redis-server ./redis.conf
- 启动kafka并创立topic
sh scripts/kafka.sh start
3.2 创立两个topic,并创立KafkaProducer来嫁给你数据写入mytopic1 - 启动FilerToKafka 和 KafkaStreamingETL
残缺代码:https://github.com/hulichao/bigdata-spark/blob/master/src/main/scala/com/hoult/Streaming/work
4.spark-streamin注意事项
spark-streaming读文件读不到的问题 ,读取本地文件时候,要留神,它不会读取本来就存在于该文件里的文本,只会读取在监听期间,传进文件夹里的数据,而且本文本还有要求,必须是它组后一次更改并且保留的操作,是在监听开始的那一刻
之后的,其实意思就是,如果要向被监听的文件夹里传一个文本,你就要在监听开始之后,先关上这个文本,轻易输出几个空格,或者回车,或者其余不影响文本内容的操作,而后保留,最初再传进文件夹里,这样它能力
检测到这个被传进来的文本。(预计它这个用意是只监听被更改过的文本吧),参考:https://www.codeleading.com/article/9561702251/
吴邪,小三爷,混迹于后盾,大数据,人工智能畛域的小菜鸟。
更多请关注