一、神经网络实现过程
1、筹备数据集,提取特色,作为输出喂给神经网络
2、搭建NN(Neural Network)构造,从输出到输入(先搭建计算图,在用会话执行)(NN前向流传算法→计算输入)
3、大量特色数据喂给NN,迭代优化NN参数(NN反向流传算法→优化参数训练模型)
4、应用训练好的模型预测和分类
二、前向流传
参数W的维数为:前行后列(即后面一层的个数为W的行数 前面一层的个数为W的列数)
前向流传代码示例:
import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #暗藏输入正告import tensorflow as tf#定义输出和参数用placeholder定义输出 (sess.run喂入一组或多组数据)#tf.Variable示意生成随机数 shape(a, b)示意数据类型为a行b列x = tf.placeholder(tf.float32,shape=(None, 2)) #多组数据的话应用none示意w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))#定义前向流传过程a = tf.matmul(x, w1)y = tf.matmul(a, w2)#调用会话计算结果 (变量初始化,计算图节点运算,都要用会话(with构造)实现)with tf.Session() as sess:#变量初始化init_op = tf.global_variables_initializer()#计算图节点运算:在sess.run函数中写入带运算的节点sess.run(init_op) #用tf.placeholder在后面占位,在sess.run函数中用feed_dict喂入数据print("the result of 前向流传 is :n", sess.run(y,feed_dict={x:[[0.7, 0.5], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]}))print("w1:", sess.run(w1))print("w2:", sess.run(w2))
三、反向流传
1、反向流传的作用:训练模型参数,在所有参数上用梯度降落办法,使NN模型在训练数据上的损失函数最小
2、损失函数(loss):用于预测值(y)和已知标准答案(y_)的差距
3、均方误差MSE:可用TensorFlow的函数示意:loss = tf.reduce_mean(tf,square(y_ - y))
4、反向流传训练方法有三种:都是以减小loss值为优化指标
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)train_step = tf.train.MomentumOptimizer(0.001, 0.9).minimize(loss)train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
5、学习率:决定参数每次更新的幅度
反向流传代码示例:
import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import tensorflow as tfimport numpy as np #numpy是Python的科学计算模块BATCH_SIZE = 8 #一次喂入神经网络的数据组数seed = 23455 #随机种子#基于seed产生随机数rng = np.random.RandomState(seed)#随机数返回 32行2列的矩阵 示意32组 体积和分量 作为输出数据集X = rng.rand(32, 2)#从X这个32行2列的矩阵中 取出一行 判断如果和小于1 给Y赋值1 如果不小于1 则赋值0#作为输出数据集的标签(正确答案)Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]print("X:", X)print("Y:", Y)#1定义神经网络的输出和输入 定义前向流传过程x = tf.placeholder(tf.float32, shape=(None, 2)) #神经网络输出的数据y_ = tf.placeholder(tf.float32, shape=(None, 1)) #与输出数据对应的规范输入w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))#前向流传计算过程a = tf.matmul(x, w1) #第一层输入y = tf.matmul(a, w2) #第二层输入#2定义损失函数以及反向流传办法loss = tf.reduce_mean(tf.square(y-y_)) #应用均方误差计算losstrain_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss) #应用梯度降落实现训练过程,minimize示意向减小的方向优化# train_step = tf.train.MomentumOptimizer(0.001, 0.9).minimize(loss)# train_step = tf.train.AdamOptimizer(0.001).minimize(loss)#3生成会话 训练STEPS轮with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) #输入目前(未经训练)的参数取值 print("w1:",sess.run(w1)) print("w2:",sess.run(w2)) print("n") #训练模型 STEP = 3000 for i in range(STEP): start = (i*BATCH_SIZE) % 32 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]}) if i % 500 == 0: total_loss = sess.run(loss, feed_dict={x: X, y_: Y}) print("after %d training step(s), loss on all data is %g" %(i, total_loss)) #输入训练后的参数取值 print("n") print("w1:n", sess.run(w1)) print("w2:n", sess.run(w2))
四、损失函数
神经元模型的降级
神经网络中罕用的激活函数
1、NN的优化指标:loss最小(有三种办法)
第一种:mse(Mean Squared Error)均方误差:示意预测值与标准值之间的间隔
第二种:自定义
第三种:ce(Cross Entropy)穿插熵:示意两个概率分布之间的间隔
五、学习率
1、参数的变动过程
2、学习率大了震荡不收敛,小了收敛速度慢(解决办法:应用指数衰减学习率)
3、指数衰减代码示例
import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'#设损失函数loss = (w1 + 1)^2 令w初值为常数5 反向流传就是求最优w 即求最小loss对应的w值#应用指数衰减的学习率,在迭代初期失去较高的降落速度,能够在较小的训练轮数下获得更有收敛度import tensorflow as tfLEARNING_RATE_BASE = 0.1 #最后的学习率LEARNING_RATE_DECAY = 0.99 #学习率衰减率LEARNING_RATE_STEP = 1 #喂入多少轮BATCH_SIZE后,更新一次学习率,个别设为:总样本数/BATCH_SIZE#运行了几轮BATCH_SIZE的计数器,初值给0,设为不被训练global_step = tf.Variable(0, trainable=False)#定义指数降落学习率learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True)#定义待优化参数,初值给10w = tf.Variable(tf.constant(5, dtype=tf.float32))#定义损失函数lossloss = tf.square(w+1)#定义反向流传办法train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)#生成会话,训练40轮with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) for i in range(40): sess.run(train_step) learning_rate_val = sess.run(learning_rate) globals_step_val = sess.run(global_step) w_val = sess.run(w) loss_val = sess.run(loss) print("After %s steps: global_step is %f,w is %f, learning rate is %f, loss is %f" %(i, globals_step_val, w_val, learning_rate_val, loss_val))
4、滑动均匀代码示例
import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import tensorflow as tf#1.定义变量及滑动均匀类#定义一个32位浮点变量,初值为0.0 这个代码就是不断更新w1参数, 优化w1参数,滑动均匀做了个w1的影子w1 = tf.Variable(0, dtype=tf.float32)#定义num_updates(NN的迭代轮次),初始值为0时示意不可被优化(训练),这个参数不训练global_step = tf.Variable(0, trainable=False)# 实例化滑动均匀类, 给衰减率为0.99,以后轮数global_stepMOVING_AVERAGE_DECAY = 0.99ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)#apply后的括号里是更行列表,每次运行sess.run(ema_op)时,对更新列表中的元素求滑动平均值#在理论利用中会应用tf.trainable_variables()主动将多有待训练的参数汇总为列表#ema_op = ema.apply([w21])ema_op = ema.apply(tf.trainable_variables())#查看不同迭代中变量取值的变动with tf.Session() as sess: # 初始化 init_op = tf.global_variables_initializer() sess.run(init_op) #用ema.average(w1)获取w1滑动平均值(要运行多个节点,作为列表中的元素列出,写在sess,run中) #打印出以后参数w1和w1的滑动平均值 print(sess.run([w1, ema.average(w1)])) #参数w1赋值为1 sess.run(tf.assign(w1, 1)) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) #更新step和w1的值,模拟出100轮迭代后,参数w1变为10 sess.run(tf.assign(global_step, 100)) sess.run(tf.assign(w1, 10)) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) #每次sess,run会更新一次w1的滑动平均值 sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)])) sess.run(ema_op) print(sess.run([w1, ema.average(w1)]))
六、正则化
1、作用:避免模型过拟合,导致训练是正确率高,预测时正确率小的问题 蕴含正则化的模型曲线会比没有正则化的更加平滑
2、正则化示例代码
import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltBATCH_SIZE = 30seed = 2# 基于seed产生随机数、rdm = np.random.RandomState(seed)# 随机数返回300行2列的矩阵,示意300组坐标点(x0,x1)作为输出数据集X = rdm.randn(300, 2)# 从x这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1 相同则赋值0# 作为输出数据集的标签(正确答案)Y_ = [int(x0*x0 + x1*x1 < 2) for (x0, x1) in X]# 遍历Y中的每个元素,1赋值red 其余赋值blue,这样可视化显示时人能够直观辨别Y_c = [['red' if y else 'blue'] for y in Y_]# 对数据集X和标签Y进行shape整顿,第一个元素为-1示意,随第二个参数计算失去,第二个元素示意多少列,吧X整顿为n行2列,把Y整顿为n行1列X = np.vstack(X).reshape(-1, 2)Y_ = np.vstack(Y_).reshape(-1, 1)print(X)print(Y_)print(Y_c)# 用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值示意色彩(c是color的缩写)plt.scatter(X[:, 0], X[:, 1], c = np.squeeze(Y_c))plt.show()# 定义神经网络的输出、参数和输入,定义前向流传过程# 生成w的函数def get_weight(shape, reularizer): w = tf.Variable(tf.random_normal(shape), dtype=tf.float32) tf.add_to_collection('losses', tf.keras.regularizers.l2(reularizer)(w)) # TensorFlow高版本中contrib.l2没有了,故应用Keras来进行正则化 return w# 生成偏执值b的函数def get_bias(shape): b = tf.Variable(tf.constant(0.01, shape = shape)) return bx = tf.placeholder(tf.float32, shape=(None, 2))y_ = tf.placeholder(tf.float32, shape=(None, 1))# 第一层w1 = get_weight([2, 11], 0.01) # ([行数,列数], 权重)b1 = get_bias([11])y1 = tf.nn.relu(tf.matmul(x, w1)+b1)# 第二层w2 = get_weight([11, 1], 0.01)b2 = get_bias([1])y = tf.matmul(y1, w2)+b2 # 输入层不过激活# 定义损失函数loss_mse = tf.reduce_mean(tf.square(y - y_)) # 均方误差的损失函数loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))# 均方误差的损失 + 正则化w的损失# 定义反向流传办法:不含正则化train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse) # 应用AdamOptimizer优化器进行优化with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEP = 20000 for i in range(STEP): start = (i*BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]}) if i % 2000 == 0: loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_}) print("After %d steps, loss is :%f" %(i, loss_mse_v)) # xx在-3到3之间以步长为0.01, yy在-3到3之间以步长0.01,生成二位网格坐标点 xx, yy = np.mgrid[-3:3:0.1, -3:3:0.1] # 将xx, yy拉直,并合并成一个2列的矩阵,失去一个网格坐标点的汇合 grid = np.c_[xx.ravel(), yy.ravel()] # 件网格坐标点喂入神经网络,probs输入 probs = sess.run(y, feed_dict={x:grid}) # probs的shape调整成xx的样子 probs = probs.reshape(xx.shape) print("w1 :n",sess.run(w1)) print("b1 :n", sess.run(b1)) print("w2 :n", sess.run(w2)) print("b2 :n", sess.run(b2))plt.scatter(X[:, 0], X[:, 1], c = np.squeeze(Y_c))plt.contour(xx, yy, probs, levels=[.5])plt.show()# 定义反向流传办法:蕴含正则化train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total) # 应用AdamOptimizer优化器进行优化with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEP = 20000 for i in range(STEP): start = (i*BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]}) if i % 2000 == 0: loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_}) print("After %d steps, loss is :%f" %(i, loss_mse_v)) # xx在-3到3之间以步长为0.01, yy在-3到3之间以步长0.01,生成二位网格坐标点 xx, yy = np.mgrid[-3:3:0.1, -3:3:0.1] # 将xx, yy拉直,并合并成一个2列的矩阵,失去一个网格坐标点的汇合 grid = np.c_[xx.ravel(), yy.ravel()] # 件网格坐标点喂入神经网络,probs输入 probs = sess.run(y, feed_dict={x:grid}) # probs的shape调整成xx的样子 probs = probs.reshape(xx.shape) print("w1 :n",sess.run(w1)) print("b1 :n", sess.run(b1)) print("w2 :n", sess.run(w2)) print("b2 :n", sess.run(b2))plt.scatter(X[:, 0], X[:, 1], c = np.squeeze(Y_c))plt.contour(xx, yy, probs, levels=[.5])plt.show()