DolphinDB是新一代的高性能分布式时序数据库(time-series database),同时具备丰盛的数据分析和分布式计算性能。本教程应用DolphinDB对淘宝APP的用户行为数据进行剖析,进一步剖析业务问题。

数据起源:User Behavior Data from Taobao for Recommendation-数据集-阿里云天池

本教程中,咱们把DolphinDB以及应用的数据集封装到docker中。docker中蕴含了DolphinDB的分布式数据库dfs://user_behavior 。它蕴含一张表user,保留了2017年11月25日到2017年12月3日之间将近一百万淘宝APP用户的行为记录。咱们采纳组合分区形式,第一层依照日期分区,每天一个分区,第二层依照userID进行哈希分区,一共划分为180个分区。user表的构造如下所示:

各种用户行为类型的含意如下:

  • pv:浏览商品详情页
  • buy:商品购买
  • cart:将商品退出购物车
  • fav:珍藏商品
  1. 下载docker部署包

本教程曾经把DolphinDB以及用到的数据封装到docker容器中。应用前确保docker环境曾经部署好。docker装置教程请参考https://docs.docker.com/install/。从http://www.dolphindb.cn/downloads/bigdata.tar.gz下载部署包,到部署包所在目录执行以下代码。

解压部署包:

gunzip bigdata.tar.gz

导入容器快照作为镜像:

cat bigdata.tar | docker import - my/bigdata:v1

获取镜像my/bigdata:v1的ID:

docker images

启动容器(依据理论状况替换images id):

docker run -dt -p 8888:8848 --name test <image id> /bin/bash ./dolphindb/start.sh

在浏览器地址栏中输出本机IP地址:8888,如localhost:8888,进入DolphinDB Notebook。以下代码均在DolphinDB Notebook中执行。

该docker中的DolphinDB license有效期到2019年9月1日,如果license文件过期,只须要到DolphinDB官网下载社区版,用社区版的license替换bigdata.tar/dolphindb/dolphindb.lic即可。

  1. 用户行为剖析

查看数据量:

login("admin","123456")user=loadTable("dfs://user_behavior","user")select count(*) from user
98914533

user表中一共有98,914,533条记录。

剖析用户从浏览到最终购买商品整个过程的行为状况:

PV=exec count(*) from user where behavior="pv"
88596903
UV=count(exec distinct userID from user)
987984

在这9天中,淘宝APP的页面访问量为88,596,903,独立访客为987,984。

下面应用到的exec是DolphinDB独有的性能,它与select相似。两者的区别是,select语句总是返回一个表,exec抉择一列时会返回一个向量,与聚合函数一起应用时会返回一个标量,与pivoy by一起应用时会返回一个矩阵,不便后续对数据的计算。

统计只浏览一次页面的用户数量:

onceUserNum=count(select count(behavior) from user group by userID having count(behavior)=1)
92
jumpRate=onceUserNumUV*100
0.009312

只有92个用户只浏览过一个页面就来到了APP,占总用户数的0.0093%,简直能够忽略不计,阐明淘宝有足够的吸引力让用户停留在APP中。

统计各个用户行为的数量:

behaviors=select count(*) as num from user group by behavior

计算从有浏览到有动向购买的转化率:

将商品退出购物车和珍藏商品都能够认为用户有动向购买。统计有动向购买的用户行为数量:

fav_cart=exec sum(num) from behaviors where behavior="fav" or behavior="cart"
8318654
intentRate=fav_cartPV*100
9.389328

从浏览到有动向购买只有9.38%的转化率。

buy=(exec num from behaviors where behavior="buy")[0]
1998976
buyRate=buyPV*100
2.256259
intent_buy=buyfav_cart*100
24.030041

从浏览到最终购买只有2.25%的转化率,从有动向购买到最终购买的转化率为24.03%,阐明大部分用户用户会把中意的商品珍藏或退出购物车,但不肯定会立刻购买。

对各种用户行为的独立访客进行统计:

userNums=select count(userID) as num from (select count(*) from user group by behavior,userID) group by behavior

pay_user_rate=(exec num from userNums where behavior="buy")[0]UV*100
67.852313

这9天中,应用淘宝APP的付费用户占67.8%,阐明大部分用户会在淘宝APP上购物。

统计每天各种用户行为的用户数量:

dailyUserNums=select sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user group by date(behaveTime) as date

周五、周六和周日(2017.11.25、2017.11.26、2017.12.02、2017.12.03)淘宝APP的访问量明显增加。

iif是DolphinDB的条件运算符,它的语法是iif(cond, trueResult, falseResult),cond通常是布尔表达式,如果满足cond,则返回trueResult,如果不满足cond,则返回falseResult。

别离统计每天不同时间段下各种用户行为的数量。咱们提供了以下两种办法:

第一种办法是别离统计各个时间段的数据,再把各个后果合并。例如,统计工作日2017.11.29(周三)不同时间段的用户行为数量。

re1=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T00:00:00 : 2017.11.29T05:59:59re2=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T06:00:00 : 2017.11.29T08:59:59re3=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T09:00:00 : 2017.11.29T11:59:59re4=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T12:00:00 : 2017.11.29T13:59:59re5=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T14:00:00 : 2017.11.29T17:59:59re6=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T18:00:00 : 2017.11.29T21:59:59re7=select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between 2017.11.29T22:00:00 : 2017.11.29T23:59:59re=unionAll([re1,re2,re3,re4,re5,re6,re7],false)

这种办法比较简单,然而须要编写大量反复代码。当然也能够把反复代码封装成函数。

def calculateBehavior(startTime,endTime){    return select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user where behaveTime between startTime : endTime}

这样只须要指定时间段的起始工夫即可。

另外一种办法是通过DolphinDB的Map-Reduce框架来实现。例如,统计工作日2017.11.29(周三)的用户行为。

def caculate(t){    return select first(behaveTime) as time, sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from t    }ds1 = repartitionDS(<select * from user>, `behaveTime, RANGE,2017.11.29T00:00:00 2017.11.29T06:00:000 2017.11.29T09:00:00 2017.11.29T12:00:00 2017.11.29T14:00:00 2017.11.29T18:00:00 2017.11.29T22:00:00 2017.11.29T23:59:59)WedBehavior = mr(ds1, caculate, , unionAll{, false})

咱们应用repartitionDS函数对user表从新依照工夫范畴来分区(不扭转user表原来的分区形式),并生成多个数据源,而后通过mr函数,对数据源进行并行计算。DolphinDB会把caculate函数利用到各个数据源上,而后把各个后果合并。

工作日,凌晨(0点到6点)淘宝APP的使用率最高,其次是下午(14点到16点)。

统计周六(2017.11.25)和周日(2017.11.26)的用户行为:

ds2 = repartitionDS(<select * from user>, `behaveTime, RANGE,2017.11.25T00:00:00 2017.11.25T06:00:000 2017.11.25T09:00:00 2017.11.25T12:00:00 2017.11.25T14:00:00 2017.11.25T18:00:00 2017.11.25T22:00:00 2017.11.25T23:59:59)SatBehavior = mr(ds2, caculate, , unionAll{, false})

ds3 = repartitionDS(<select * from user>, `behaveTime, RANGE,2017.11.26T00:00:00 2017.11.26T06:00:000 2017.11.26T09:00:00 2017.11.26T12:00:00 2017.11.26T14:00:00 2017.11.26T18:00:00 2017.11.26T22:00:00 2017.11.26T23:59:59)SunBehavior = mr(ds3, caculate, , unionAll{, false})

周六和周日各个时间段淘宝APP的使用率都比工作日的使用率要高。同样地,周六日淘宝APP应用顶峰是凌晨(0点到6点)。

  1. 商品剖析

allItems=select distinct(itemID) from user
4142583

在这9天中,一共波及到4,142,583种商品。

统计每个商品的购买次数:

itemBuyTimes=select count(userID) as times from user where behavior="buy" group by itemID order by times desc

统计销量前20的商品:

salesTop=select top 20 * from itemBuyTimes order by times desc

ID为3122135的商品销量最高,一共有1,408次购买。

统计各个购买次数下商品的数量:

buyTimesItemNum=select count(itemID) as itemNums from itemBuyTimes group by times order by itemNums desc

结果显示,绝大部分(370,747种)商品在这9天中都只被购买了一次,占所有商品的8.94%。购买次数越多,波及到的商品数量越少。

统计所有商品的用户行为数量:

allItemsInfo=select sum(iif(behavior=="pv",1,0)) as pageView, sum(iif(behavior=="fav",1,0)) as favorite, sum(iif(behavior=="cart",1,0)) as shoppingCart, sum(iif(behavior=="buy",1,0)) as payment from user group by itemID 

统计浏览量前20的商品:

pvTop=select top 20 itemID,pageView from allItemsInfo order by pageView desc

浏览量最高的商品ID为812879,共有29,720次浏览,然而销量仅为135,没有进入到销量前20。

统计销量前20的商品各个用户行为的数量:

select * from ej(salesTop,allItemsInfo,`itemID) order by times desc

销量最高的商品3122135的浏览量为1777,没有进入浏览量前20,从浏览到购买的转化率高达79.2%,该商品有可能是刚需用品,用户不须要太多浏览就决定购买。

扩大练习:

(1)计算2017.11.25每小时淘宝APP的购买率(购买率=购买次数/总行为次数*100%)

(2)找出购买次数最多的用户以及他购买最多的商品

(3)计算商品ID为3122135的商品在各个时间段中的购买次数

(4)统计每个类别每个行为的次数

(5)计算每个类别中销量最高的商品

本教程仅供学习应用。

应用过程中有任何问题欢送退出智臾科技:DolphinDB技术交换群,内含二维码