10人将获赠CNCF商店$100美元礼券!
你填了吗?
问卷链接(https://www.wjx.cn/jq/9714648...)
作者:Alex Collins
Python 是用户在 Kubernetes 上编写机器学习工作流的风行编程语言。
开箱即用时,Argo 并没有为 Python 提供一流的反对。相同,咱们提供Java、Golang 和 Python API 客户端。
但这对大多数用户来说还不够。许多用户须要一个形象层来增加组件和特定于用例的个性。
明天你有两个抉择。
KFP 编译器+ Python 客户端
Argo 工作流被用作执行 Kubeflow 流水线的引擎。你能够定义一个 Kubeflow 流水线,并在 Python 中将其间接编译到 Argo 工作流中。
而后你能够应用Argo Python 客户端向 Argo 服务器 API 提交工作流。
这种办法容许你利用现有的 Kubeflow 组件。
装置:
pip3 install kfppip3 install argo-workflows
例子:
import kfp as kfpdef flip_coin(): return kfp.dsl.ContainerOp( name='Flip a coin', image='python:alpine3.6', command=['python', '-c', """import randomres = "heads" if random.randint(0, 1) == 0 else "tails"with open('/output', 'w') as f: f.write(res) """], file_outputs={'output': '/output'} )def heads(): return kfp.dsl.ContainerOp(name='Heads', image="alpine:3.6", command=["sh", "-c", 'echo "it was heads"'])def tails(): return kfp.dsl.ContainerOp(name='Tails', image="alpine:3.6", command=["sh", "-c", 'echo "it was tails"'])@kfp.dsl.pipeline(name='Coin-flip', description='Flip a coin')def coin_flip_pipeline(): flip = flip_coin() with kfp.dsl.Condition(flip.output == 'heads'): heads() with kfp.dsl.Condition(flip.output == 'tails'): tails()def main(): kfp.compiler.Compiler().compile(coin_flip_pipeline, __file__ + ".yaml")if __name__ == '__main__': main()
运行这个来创立你的工作流:
apiVersion: argoproj.io/v1alpha1kind: Workflowmetadata: generateName: coin-flip- annotations: {pipelines.kubeflow.org/kfp_sdk_version: 1.3.0, pipelines.kubeflow.org/pipeline_compilation_time: '2021-01-21T17:17:54.299235', pipelines.kubeflow.org/pipeline_spec: '{"description": "Flip a coin", "name": "Coin-flip"}'} labels: {pipelines.kubeflow.org/kfp_sdk_version: 1.3.0}spec: entrypoint: coin-flip templates: - name: coin-flip dag: tasks: - name: condition-1 template: condition-1 when: '"{{tasks.flip-a-coin.outputs.parameters.flip-a-coin-output}}" == "heads"' dependencies: [flip-a-coin] - name: condition-2 template: condition-2 when: '"{{tasks.flip-a-coin.outputs.parameters.flip-a-coin-output}}" == "tails"' dependencies: [flip-a-coin] - {name: flip-a-coin, template: flip-a-coin} - name: condition-1 dag: tasks: - {name: heads, template: heads} - name: condition-2 dag: tasks: - {name: tails, template: tails} - name: flip-a-coin container: command: - python - -c - "\nimport random\nres = \"heads\" if random.randint(0, 1) == 0 else \"tails\"\ \nwith open('/output', 'w') as f:\n f.write(res) \n " image: python:alpine3.6 outputs: parameters: - name: flip-a-coin-output valueFrom: {path: /output} artifacts: - {name: flip-a-coin-output, path: /output} - name: heads container: command: [sh, -c, echo "it was heads"] image: alpine:3.6 - name: tails container: command: [sh, -c, echo "it was tails"] image: alpine:3.6 arguments: parameters: [] serviceAccountName: pipeline-runner
留神,Kubeflow 不反对这种办法。
你能够应用客户端提交上述工作流程如下:
import yamlfrom argo.workflows.client import (ApiClient, WorkflowServiceApi, Configuration, V1alpha1WorkflowCreateRequest)def main(): config = Configuration(host="http://localhost:2746") client = ApiClient(configuration=config) service = WorkflowServiceApi(api_client=client)with open("coin-flip.py.yaml") as f: manifest: dict = yaml.safe_load(f)del manifest['spec']['serviceAccountName']service.create_workflow('argo', V1alpha1WorkflowCreateRequest(workflow=manifest))if __name__ == '__main__': main()
Couler
Couler是一个风行的我的项目,它容许你以一种平台无感的形式指定工作流,但它次要反对 Argo 工作流(打算在将来反对 Kubeflow 和 AirFlow):
装置:
pip3 install git+https://github.com/couler-proj/couler
例子:
import couler.argo as coulerfrom couler.argo_submitter import ArgoSubmitterdef random_code(): import randomres = "heads" if random.randint(0, 1) == 0 else "tails" print(res)def flip_coin(): return couler.run_script(image="python:alpine3.6", source=random_code)def heads(): return couler.run_container( image="alpine:3.6", command=["sh", "-c", 'echo "it was heads"'] )def tails(): return couler.run_container( image="alpine:3.6", command=["sh", "-c", 'echo "it was tails"'] )result = flip_coin()couler.when(couler.equal(result, "heads"), lambda: heads())couler.when(couler.equal(result, "tails"), lambda: tails())submitter = ArgoSubmitter()couler.run(submitter=submitter)
这会创立以下工作流程:
apiVersion: argoproj.io/v1alpha1kind: Workflowmetadata: generateName: couler-example-spec: templates: - name: couler-example steps: - - name: flip-coin-29 template: flip-coin - - name: heads-31 template: heads when: '{{steps.flip-coin-29.outputs.result}} == heads' - name: tails-32 template: tails when: '{{steps.flip-coin-29.outputs.result}} == tails' - name: flip-coin script: name: '' image: 'python:alpine3.6' command: - python source: |import randomres = "heads" if random.randint(0, 1) == 0 else "tails" print(res) - name: heads container: image: 'alpine:3.6' command: - sh - '-c' - echo "it was heads" - name: tails container: image: 'alpine:3.6' command: - sh - '-c' - echo "it was tails" entrypoint: couler-example ttlStrategy: secondsAfterCompletion: 600 activeDeadlineSeconds: 300
点击浏览网站原文。
CNCF (Cloud Native Computing Foundation)成立于2015年12月,隶属于Linux Foundation,是非营利性组织。
CNCF(云原生计算基金会)致力于培养和保护一个厂商中立的开源生态系统,来推广云原生技术。咱们通过将最前沿的模式民主化,让这些翻新为公众所用。扫描二维码关注CNCF微信公众号。