本文基于JDK1.8  >读完本文预计须要25分钟(因有大量源代码,电脑屏观看体验较佳)

摘要

HashMap置信这是呈现频率最高的面试点之一,应该是面试问到烂的面试题之一,同时也是Java中用于解决键值对最罕用的数据类型。那么咱们就针对JDK8的HashMap独特学习一下!

次要办法

要害变量:

    /**     * The default initial capacity - MUST be a power of two.     * 初始容量大小 必须是2的次幂     */    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16    /**     * The maximum capacity, used if a higher value is implicitly specified     * by either of the constructors with arguments.     * MUST be a power of two <= 1<<30.     * 最大的容量大小     * 超过这个值就将threshold批改为Integer.MAX_VALUE,数组不进行扩容     */    static final int MAXIMUM_CAPACITY = 1 << 30;    /**     * The load factor used when none specified in constructor.     * 负载因子 为什么是0.75?因为统计学中hash抵触合乎泊松散布,7-8之间抵触最小     */    static final float DEFAULT_LOAD_FACTOR = 0.75f;    /**     * The bin count threshold for using a tree rather than list for a     * bin.  Bins are converted to trees when adding an element to a     * bin with at least this many nodes. The value must be greater     * than 2 and should be at least 8 to mesh with assumptions in     * tree removal about conversion back to plain bins upon     * shrinkage.     * 链表大于这个值就会树化     * 留神:树化并不是整个map链表,而是某一个大于此阈值的链表     */    static final int TREEIFY_THRESHOLD = 8;    /**     * The bin count threshold for untreeifying a (split) bin during a     * resize operation. Should be less than TREEIFY_THRESHOLD, and at     * most 6 to mesh with shrinkage detection under removal.     * 小于这个值就会反树化     */    static final int UNTREEIFY_THRESHOLD = 6;

四个构造方法:

//构造方法1//指定初始容量大小,负载因子public HashMap(int initialCapacity, float loadFactor) {        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY) //1<<30 最大容量是 Integer.MAX_VALUE;            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +                                               loadFactor);        this.loadFactor = loadFactor;        //tableSizeFor这个办法用于找到大于等于initialCapacity的最小的2的幂        this.threshold = tableSizeFor(initialCapacity);    }//构造方法2//其实调用了上边的构造方法1 负载因子给的默认值0.75public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);    }//构造方法3//空参结构,均应用默认值public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted    }    //构造方法4//与其余三个相比,初始化了public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAULT_LOAD_FACTOR;//0.75f        //调用了putVal办法,而putVal办法中有resize办法,有初始化        putMapEntries(m, false);    }

对四个构造方法简略总结一下:

1、前三个构造函数并没有初始化,都是用到的时候去初始化2、构造方法4相当于用到了put办法,所以初始化了

hashmap->hash()

/**     * Computes key.hashCode() and spreads (XORs) higher bits of hash     * to lower.  Because the table uses power-of-two masking, sets of     * hashes that vary only in bits above the current mask will     * always collide. (Among known examples are sets of Float keys     * holding consecutive whole numbers in small tables.)  So we     * apply a transform that spreads the impact of higher bits     * downward. There is a tradeoff between speed, utility, and     * quality of bit-spreading. Because many common sets of hashes     * are already reasonably distributed (so don't benefit from     * spreading), and because we use trees to handle large sets of     * collisions in bins, we just XOR some shifted bits in the     * cheapest possible way to reduce systematic lossage, as well as     * to incorporate impact of the highest bits that would otherwise     * never be used in index calculations because of table bounds.     * 计算key.hashCode()并将哈希的较高位(XOR)扩大为较低。     * 因为该表应用2的幂次掩码,因而仅在以后掩码上方的位中发生变化的哈希集将始终发生冲突。     * (家喻户晓的示例是在小表中蕴含间断整数的Float键集。)因而,咱们利用了一种变换,     * 将向下扩大较高位的影响。 在速度,实用性和位扩大品质之间须要衡量。     * 因为许多常见的哈希集曾经正当散布(因而无奈从扩大中受害),     * 并且因为咱们应用树来解决容器中的大量抵触,因而咱们仅以最便宜的形式对一些移位后的位进行XOR,     * 以缩小零碎损失, 以及合并最高位的影响,否则因为表范畴的限度,这些位将永远不会在索引计算中应用。     */    static final int hash(Object key) {        int h;        //为什么^ (h >>> 16) 更加散列,性能考量,不便位运算        //不便在put,get办法中(n - 1) & hash计算数组下标        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);        //HashMap中key值能够为null, 看到0那么咱们能够判断null值肯定存储在数组的第一个地位    }

hashmap->put()

次要逻辑:

以下是源代码(带正文):

    /**         * Associates the specified value with the specified key in this map.         * If the map previously contained a mapping for the key, the old         * value is replaced.         * //将指定的值与此映射中的指定键关联。如果该映射先前蕴含了该键的映射,则旧值将被替换。         *         * @param key key with which the specified value is to be associated         * @param value value to be associated with the specified key         * @return the previous value associated with <tt>key</tt>, or         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.         *         (A <tt>null</tt> return can also indicate that the map         *         previously associated <tt>null</tt> with <tt>key</tt>.)         */        public V put(K key, V value) {            //把key先去hash一下拿到hash值            return putVal(hash(key), key, value, false, true);        }            /**         * Implements Map.put and related methods.         *         * @param hash hash for key         * @param key the key         * @param value the value to put         * @param onlyIfAbsent if true, don't change existing value //if true 则不扭转原来存在的值         * @param evict if false, the table is in creation mode.//if false 则表处于创立模式         * @return previous value, or null if none         */        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                       boolean evict) {                //数组+链表+红黑树,链表型(Node泛型)数组,每一个元素代表一条链表,则每个元素称为桶            //HashMap 的每一个元素,都是链表的一个节点(Entry<K,V>)这里也就是Node<K,V>                //tab:桶 p:桶 n:哈希表数组大小 i:数组下标(桶的地位)            Node<K,V>[] tab; Node<K,V> p; int n, i;            //1.判断以后桶是否为空,空的就调用resize()办法(resize 中会判断是否进行初始化)            if ((tab = table) == null || (n = tab.length) == 0)                n = (tab = resize()).length;            //2.判断是否有hash抵触,依据入参key与key的hash值找到具体的桶并判空,空则无抵触 间接新建桶            //?为什么采纳(n - 1) & hash计算数组下标,感兴趣的能够深刻理解            if ((p = tab[i = (n - 1) & hash]) == null)                tab[i] = newNode(hash, key, value, null);            //3.以下示意有抵触,解决hash抵触            else {                Node<K,V> e; K k;//均为长期变量                //4.判断以后桶的key是否与入参key统一,统一则存在,把以后桶p赋值给e,笼罩原 value 在步骤10进行                if (p.hash == hash &&                    ((k = p.key) == key || (key != null && key.equals(k))))                    e = p;                //5.如果以后的桶为红黑树,用putTreeVal()办法写入 赋值给e                else if (p instanceof TreeNode)                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);                //6.则以后的桶是链表 遍历链表                else {                    for (int binCount = 0; ; ++binCount) {                        if ((e = p.next) == null) {                            //7.尾插法,链表下一个节点是null(链表开端),就new一个新节点写入到以后链表节点的前面                            p.next = newNode(hash, key, value, null);                            //8.判断是否大于阈值,须要链表转红黑树                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                                //binCount从0开始的, 所以当binCount为7时,链表长度为8(算上数组槽位开始的那个节点,总长度为9),则须要树化桶                                treeifyBin(tab, hash);                            break;                        }                        //9.与步骤4统一,如果链表中key存在则间接跳出 步骤10笼罩原值                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k))))                            break;                        p = e;                    }                }                //10.存在雷同的key的Node节点,则笼罩原value                if (e != null) { // existing mapping for key                    V oldValue = e.value;                    //onlyIfAbsent为true:不扭转原来的值 ;false: 扭转原来的值                    if (!onlyIfAbsent || oldValue == null)                        e.value = value;                    //LinkedHashMap用到的回调办法                    afterNodeAccess(e);                    return oldValue;                }            }             /*记录批改次数标识             用于fast-fail,因为HashMap非线程平安,在对HashMap进行迭代时,             如果期间其余线程的参加导致HashMap的构造发生变化了(比方put,remove等操作),             须要抛出异样ConcurrentModificationException             */            ++modCount;            //11.容量超过阈值,扩容            if (++size > threshold)                resize();            //LinkedHashMap用到的回调办法            afterNodeInsertion(evict);            return null;        }

那么咱们来总结一下put办法:

1、开始,入参key、value2、判断以后table是否为空或者length=0?    是,去扩容,(resize()办法中有判断是否初始化)    否,依据key算出hash值并失去插入的数组的索引        判断找到的这个table[i]是否为空?            是,直接插入,再到步骤            否,判断key是否存在?                是,间接笼罩对应的value,再到步骤3                否,去判断以后这个table[i]是不是treeNode?                    是,应用红黑树的形式插入key、value                    否,开始遍历链表筹备插入                        判断链表长度是不是大于8?                            是,链表转红黑树插入key、value                            否,以链表的形式插入key、value如果key存在就间接笼罩对应value3、判断map的size()是否大于阈值?        是 就去扩容resize()4、完结

hashmap->get()

public V get(Object key) {        Node<K,V> e;        return (e = getNode(hash(key), key)) == null ? null : e.value;    }    /**     * Implements Map.get and related methods.     *     * @param hash hash for key     * @param key the key     * @return the node, or null if none     */    final Node<K,V> getNode(int hash, Object key) {        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;        //1、判断以后数组不为空并长度大于0 && 由key的hash值找到对应数组下的桶(可能是红黑树或者链表)        if ((tab = table) != null && (n = tab.length) > 0 &&            (first = tab[(n - 1) & hash]) != null) {            //2、先判断桶的第一个节点 如果key统一 返回            if (first.hash == hash && // always check first node                ((k = first.key) == key || (key != null && key.equals(k))))                return first;            //3、再判空下一个节点不为空 && 判断是红黑树还算链表            if ((e = first.next) != null) {                //4、如果是红黑树 则按红黑树形式取值                if (first instanceof TreeNode)                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);                //否则就是链表,遍历取值                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        return e;                } while ((e = e.next) != null);            }        }        return null;    }

那么咱们来总结一下get()办法:

1、开始,入参key2、判断以后的数组长度不为空&&length>0    是 return null;    否,去判断第一个节点,如果key合乎,返回        再去判断下一个节点是否为空            是,return null            否,判断否是红黑树?                是,按红黑树的形式取值                否,遍历链表取值3、完结

hashmap->resize()

/**     * Initializes or doubles table size.  If null, allocates in     * accord with initial capacity target held in field threshold.     * Otherwise, because we are using power-of-two expansion, the     * elements from each bin must either stay at same index, or move     * with a power of two offset in the new table.     *初始化或减少表大小。 如果为空,则依据字段阈值中放弃的初始容量指标进行调配。     * 否则,因为咱们应用的是2的幂,所以每个bin中的元素必须放弃雷同的索引,或者在新表中以2的幂偏移。     * @return the table     */    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        //1、原数组扩容        if (oldCap > 0) {            //如果原数组长度大于最大容量,把阈值调最大,return            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            //把原数组大小、阈值都扩充一倍            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        //应用了指定initialCapacity的构造方法,则用原阈值作为新容量        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        //应用空参结构,用默认值        else {               // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;//16            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//0.75*16=12        }        //应用了指定initialCapacity的构造方法,新阈值为0,则计算新的阈值        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})        //2、用新的数组容量大小初始化数组        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        //如果仅仅是初始化过程,到此结束 return newTab        table = newTab;        //3、开始扩容的次要工作,数据迁徙        if (oldTab != null) {            //遍历原数组开始复制旧数据            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;//革除旧表引有                    //原数组中单个元素,间接复制到新表                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    //如果该元素类型是红黑树,按红黑树形式解决                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else { // preserve order                        //这段代码设计奇妙,环环相扣啊                        //先定义了两种类型的链表 以及头尾节点 高位链表与低位链表                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        //按程序遍历原链表的节点                        do {                            next = e.next;                            //这是一个外围的判断条件,感兴趣的能够深刻理解?为什么这么做                            //=0则放到低位链表                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            //否则放到高位链表                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                            //以上实际上就是对原来链表拆分成了两个高下位链表                        } while ((e = next) != null);                        //把整个低位链表放到新数组的j地位                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        //把整个高位链表放到新数组的j+oldCap地位上                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }

总结一下resize()办法:

1、开始,拿到原数组2、对原数组扩容      2.1如果原数组中的容量到最大,不再扩容,return原数组      2.2把原数组容量大小与阈值都扩充一倍3、如初始化用的指定initialCapacity的构造方法,则用原阈值作为新容量4、如初始化时候用的空参结构,用默认容量与默认阈值5、如初始化用的指定initialCapacity的构造方法,阈值=0,计算新的阈值6、用新的容量初始化数组,如果是初始化,完结返回新数组7、开始扩容,做数据迁徙      7.1遍历原数组copy数据到新数组            7.1.1如数组中只有一个元素,则间接复制            7.1.2如元素是红黑树数类型,则按红黑树的形式解决            7.1.3对原数组的链表进行解决                      定义一个高位链表、一个低位链表(对原链表拆分)                      开启一个循环,遍历原链表                            判断条件e.hash & oldCap == 0?                                  是,把这些链表节点放到低位链表                                  否,放到高位链表                      循环完结,遍历链表实现                      把整个低位链表放到新数组j地位                      把整个高位链表放到新数组j+oldCap地位      7.2循环完结,遍历旧数组实现8、返回新数组

我想这会浏览完结之后应该对HashMap有了肯定的意识,心愿能在面试或者工作中帮到您!

Hongchen闲聊

看起来是不是有点酷,它的名字叫”茑屋“,北京温榆河公园。

上周跟女友在家待闷了出门转转,于是咱们找了个公园,秋冬的公园还是比拟萧瑟。

年底了,疫情零零散散,心愿早点过来!peaceeeee

感激浏览

满腹经纶,如有你发现有谬误的中央,能够在后盾或者评论提出来,我会加以批改。
感谢您的浏览,欢送并感激关注!