基于redis5.0
入口
redis周期删除过期数据的函数是activeExpireCycle
,有两个中央调用这个函数:
- beforeSleep:redis在阻塞期待文件事件之前,即过程阻塞之前,会调用
beforeSleep
函数,清理过期数据的模式是ACTIVE_EXPIRE_CYCLE_FAST
,疾速清理,不影响主流程。
// server.c/* This function gets called every time Redis is entering the * main loop of the event driven library, that is, before to sleep * for ready file descriptors. */void beforeSleep(struct aeEventLoop *eventLoop) { …… /* Run a fast expire cycle (the called function will return * ASAP if a fast cycle is not needed). */ if (server.active_expire_enabled && server.masterhost == NULL) activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST); ……}
- databasesCron:redis周期工作,清理过期数据的模式是
ACTIVE_EXPIRE_CYCLE_SLOW
,绝对ACTIVE_EXPIRE_CYCLE_FAST
执行工夫略微长点。
// server.cvoid databasesCron(void) { /* Expire keys by random sampling. Not required for slaves * as master will synthesize DELs for us. */ if (server.active_expire_enabled) { if (server.masterhost == NULL) { activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW); } else { expireSlaveKeys(); } } ……}
以后节点为master
时,server.masterhost == NULL
,才执行activeExpireCycle
函数。
清理
是否容许FAST模式
// server.hint active_expire_effort; /* 致力力度,1-10取值范畴,默认 1,也就是遍历过期字典的力度,力度越大,遍历数量越多,然而性能损耗更多*/double stat_expired_stale_perc; /* 已过期键占比近似值:以先前值占比95%,本次调用运行值占比 5%进行加权均匀 */ // expire.c#define ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE 10 /* % of stale keys after which we do extra efforts. */ #define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* Microseconds. */ void activeExpireCycle(int type) { effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */ config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION + ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort, config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE - effort; long long start = ustime() /* server.c,单位us */ …… if (type == ACTIVE_EXPIRE_CYCLE_FAST) { /* Don't start a fast cycle if the previous cycle did not exit * for time limit, unless the percentage of estimated stale keys is * too high. Also never repeat a fast cycle for the same period * as the fast cycle total duration itself. */ if (!timelimit_exit && server.stat_expired_stale_perc < config_cycle_acceptable_stale) return; if (start < last_fast_cycle + (long long)config_cycle_fast_duration*2) return; last_fast_cycle = start; } ……}
执行FAST
模式有几个前提条件:
- 上一次工作不是因为超时而退出,且已过期键占比近似值
server.stat_expired_stale_perc
小于可容忍下限config_cycle_acceptable_stale
:也就是说过期数据没有那么多,SHOW
模式够用,不须要通过FAST
来帮助。 - 间隔上一次
FAST
工夫,未超过指定的工夫距离,默认是2000us
。
工夫&数量限度
// server.h#define CRON_DBS_PER_CALL 16 /* 每次查看多少个数据库 */#define CONFIG_DEFAULT_HZ 10 /* Time interrupt calls/sec. */// server.cserver.hz = server.config_hz = CONFIG_DEFAULT_HZ; // expire.c #define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* Max % of CPU to use. */#define ACTIVE_EXPIRE_CYCLE_FAST_DURATION 1000 /* Microseconds. */ void activeExpireCycle(int type) { …… int dbs_per_call = CRON_DBS_PER_CALL; config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC + 2 * effort, config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION + ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort, …… /* We usually should test CRON_DBS_PER_CALL per iteration, with * two exceptions: * * 1) Don't test more DBs than we have. * 2) If last time we hit the time limit, we want to scan all DBs * in this iteration, as there is work to do in some DB and we don't want * expired keys to use memory for too much time. */ if (dbs_per_call > server.dbnum || timelimit_exit) dbs_per_call = server.dbnum; /* We can use at max 'config_cycle_slow_time_perc' percentage of CPU * time per iteration. Since this function gets called with a frequency of * server.hz times per second, the following is the max amount of * microseconds we can spend in this function. */ timelimit = config_cycle_slow_time_perc*1000000/server.hz/100; timelimit_exit = 0; if (timelimit <= 0) timelimit = 1; if (type == ACTIVE_EXPIRE_CYCLE_FAST) timelimit = config_cycle_fast_duration; /* in microseconds. */ …… }
一次扫描dbs_per_call
个DB,默认值为16
:
- 如果超过redis的DB数量,则
dbs_per_call
改为redis的DB数量。 - 如果上一次是因为timelimit_exit(超时)而完结,阐明过期数据很多,则须要扫描所有DB,尽快清理掉所有过期数据,
dbs_per_call
改为redis的DB数量。
计算单次执行工夫timelimit:
SLOW
模式下,默认为25*1000000/10/100
us。FAST
模式下,默认为1000
us。
循环
// dict.h/* This is the initial size of every hash table */#define DICT_HT_INITIAL_SIZE 4// expire.c void activeExpireCycle(int type) { …… static unsigned int current_db = 0; /* Last DB tested. */ …… for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) { /* Expired and checked in a single loop. */ unsigned long expired, sampled; redisDb *db = server.db+(current_db % server.dbnum); /* Increment the DB now so we are sure if we run out of time * in the current DB we'll restart from the next. This allows to * distribute the time evenly across DBs. */ current_db++; /* Continue to expire if at the end of the cycle there are still * a big percentage of keys to expire, compared to the number of keys * we scanned. The percentage, stored in config_cycle_acceptable_stale * is not fixed, but depends on the Redis configured "expire effort". */ do { unsigned long num, slots; long long now, ttl_sum; int ttl_samples; iteration++; /* If there is nothing to expire try next DB ASAP. */ if ((num = dictSize(db->expires)) == 0) { db->avg_ttl = 0; break; } slots = dictSlots(db->expires); now = mstime(); /* When there are less than 1% filled slots, sampling the key * space is expensive, so stop here waiting for better times... * The dictionary will be resized asap. */ if (slots > DICT_HT_INITIAL_SIZE && (num*100/slots < 1)) break; …… /* We can't block forever here even if there are many keys to * expire. So after a given amount of milliseconds return to the * caller waiting for the other active expire cycle. */ if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */ elapsed = ustime()-start; if (elapsed > timelimit) { timelimit_exit = 1; server.stat_expired_time_cap_reached_count++; break; } } /* We don't repeat the cycle for the current database if there are * an acceptable amount of stale keys (logically expired but yet * not reclaimed). */ } while (……); } ……}
在未超时的前提下,循环DB清理数据:
- 动态变量
current_db
记录上一次清理的DB序号,每次都加1。 - 如果以后DB没有
设置了过期工夫
的记录,则完结以后DB循环,清理下一个DB。 - 如果存在过期数据,然而存储空间使用率有余1%(过期数据量/hash桶数量 < 0.01),这样遍历数据无效命中率会很低,解决起来会浪费时间,前面的拜访会很快触发字典的缩容,缩容后再进行解决效率更高, 完结以后DB循环,清理下一个DB。
- 每循环
16(0xf)
次查看下是否曾经超时,如果曾经超时,则设置超时标记timelimit_exit
,即完结当前任务。
清理
// expire.c #define ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP 20 /* Keys for each DB loop. */ void activeExpireCycle(int type) { …… config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP + ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4 * effort, …… long total_sampled = 0; long total_expired = 0; for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) { …… do { unsigned long num, slots; long long now, ttl_sum; int ttl_samples; iteration++; …… expired = 0; sampled = 0; ttl_sum = 0; ttl_samples = 0; if (num > config_keys_per_loop) num = config_keys_per_loop; long max_buckets = num*20; long checked_buckets = 0; while (sampled < num && checked_buckets < max_buckets) { for (int table = 0; table < 2; table++) { if (table == 1 && !dictIsRehashing(db->expires)) break; unsigned long idx = db->expires_cursor; idx &= db->expires->ht[table].sizemask; dictEntry *de = db->expires->ht[table].table[idx]; long long ttl; /* Scan the current bucket of the current table. */ checked_buckets++; while(de) { /* Get the next entry now since this entry may get * deleted. */ dictEntry *e = de; de = de->next; ttl = dictGetSignedIntegerVal(e)-now; if (activeExpireCycleTryExpire(db,e,now)) expired++; if (ttl > 0) { /* We want the average TTL of keys yet * not expired. */ ttl_sum += ttl; ttl_samples++; } sampled++; } } db->expires_cursor++; } total_expired += expired; total_sampled += sampled; /* Update the average TTL stats for this database. */ if (ttl_samples) { long long avg_ttl = ttl_sum/ttl_samples; /* Do a simple running average with a few samples. * We just use the current estimate with a weight of 2% * and the previous estimate with a weight of 98%. */ if (db->avg_ttl == 0) db->avg_ttl = avg_ttl; db->avg_ttl = (db->avg_ttl/50)*49 + (avg_ttl/50); } } while (sampled == 0 || (expired*100/sampled) > config_cycle_acceptable_stale); } ……}int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) { long long t = dictGetSignedIntegerVal(de); if (now > t) { sds key = dictGetKey(de); robj *keyobj = createStringObject(key,sdslen(key)); propagateExpire(db,keyobj,server.lazyfree_lazy_expire); if (server.lazyfree_lazy_expire) dbAsyncDelete(db,keyobj); else dbSyncDelete(db,keyobj); notifyKeyspaceEvent(NOTIFY_EXPIRED, "expired",keyobj,db->id); signalModifiedKey(NULL, db, keyobj); decrRefCount(keyobj); server.stat_expiredkeys++; return 1; } else { return 0; }}
- 设定最大容许抽查的过期数据数量(num),抽查的数据最大不超过
config_keys_per_loop(默认20)
。 - 设定最大容许抽查的hash桶数量(max_buckets),抽查的桶数量最大不超过
config_keys_per_loop的20倍(即默认400)
。
redis的hash数据结构是数组+链表
的形式,每遍历一格数组,抽查的bucket数量就加一;而只有在链表里有数据的状况下,每查看一个数据对象(dictEntry),才算入num计数中;
极其状况下:遍历了max_buckets个bucket都没有过期数据,或者一个bucket内就领有了num个过期数据。
- 当hash正在扩容时,redis会复制出一个hash对象,所以是遍历两个table
for (int table = 0; table < 2; table++)
,然而在遍历第二个table是会通过dictIsRehashing
判断是否存在(即是否正在扩容)。 - 通过
activeExpireCycleTryExpire
清理过期数据。 - 依据清理后果,从新设置以后DB的均匀过期工夫数据(用于查看/统计redis DB状况)。
如果一轮抽样到的 key 中过期的比例是在可容忍的范畴config_cycle_acceptable_stale(默认10%)
,那么这个 db 就不用再抽样了,清理下一个DB,否则持续清理以后DB。
收尾
void activeExpireCycle(int type) { …… elapsed = ustime()-start; server.stat_expire_cycle_time_used += elapsed; latencyAddSampleIfNeeded("expire-cycle",elapsed/1000); /* Update our estimate of keys existing but yet to be expired. * Running average with this sample accounting for 5%. */ double current_perc; if (total_sampled) { current_perc = (double)total_expired/total_sampled; } else current_perc = 0; server.stat_expired_stale_perc = (current_perc*0.05)+ (server.stat_expired_stale_perc*0.95);}
从新计算已过期键占比近似值
:本轮占比 5%,历史值占比 95%。
参考
Redis 源码剖析之 key 过期
Redis 源码浏览 --- Database
[[redis 源码走读] redis 过期策略](https://wenfh2020.com/2020/02...