本文将疏导疾速应用 MMSkeleton ,介绍用摄像头测试实时姿势预计。
- MMSkeleton: https://github.com/open-mmlab...
装置
首先装置 MMDetection ,可见 MMDetection 应用。
而后装置 MMSkeleton ,
# 启用 Python 虚拟环境conda activate open-mmlab# 下载 MMSkeletongit clone https://github.com/open-mmlab/mmskeleton.gitcd mmskeleton# 装置 MMSkeletonpython setup.py develop# 装置 nms op for person estimationcd mmskeleton/ops/nms/python setup_linux.py developcd ../../../
现有模型,视频测试
配置
configs/pose_estimation/pose_demo.yaml
:
processor_cfg: video_file: resource/data_example/ta_chi.mp4 detection_cfg: model_cfg: ../mmdetection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py checkpoint_file: ../mmdetection/checkpoints/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth bbox_thre: 0.8
选用的检测模型,如下:
Cascade R-CNN, R-50-FPN, 1x
- config
- model
运行
# verify that mmskeleton and mmdetection installed correctly# python mmskl.py pose_demo [--gpus $GPUS]python mmskl.py pose_demo --gpus 1
后果将会存到 work_dir/pose_demo/ta_chi.mp4
。
现有模型,WebCam 测试
配置
configs/apis/pose_estimator.cascade_rcnn+hrnet.yaml
:
detection_cfg: model_cfg: mmdetection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py checkpoint_file: mmdetection/checkpoints/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth bbox_thre: 0.8estimation_cfg: model_cfg: mmskeleton/configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml checkpoint_file: mmskeleton://pose_estimation/pose_hrnet_w32_256x192 data_cfg: image_size: - 192 - 256 pixel_std: 200 image_mean: - 0.485 - 0.456 - 0.406 image_std: - 0.229 - 0.224 - 0.225 post_process: true
确认 detection_cfg
estimation_cfg
的门路正确。
写码
编写 webcam.py,次要代码如下:
def main(): args = parse_args() win_name = args.win_name cv.namedWindow(win_name, cv.WINDOW_NORMAL) with Camera(args.cam_idx, args.cam_width, args.cam_height, args.cam_fps) as cam: cfg = mmcv.Config.fromfile(args.cfg_file) detection_cfg = cfg["detection_cfg"] print("Loading model ...") model = init_pose_estimator(**cfg, device=0) print("Loading model done") for frame in cam.reads(): res = inference_pose_estimator(model, frame) res_image = pose_demo.render( frame, res["joint_preds"], res["person_bbox"], detection_cfg.bbox_thre) cv.imshow(win_name, res_image) key = cv.waitKey(1) & 0xFF if key == 27 or key == ord("q"): break cv.destroyAllWindows()
运行
$ python webcam.py \--cam_idx 2 --cam_width 640 --cam_height 480 --cam_fps 10 \--cfg_file configs/apis/pose_estimator.cascade_rcnn+hrnet.yamlArgs win_name: webcam cam_idx: 2 cam_width: 640 cam_height: 480 cam_fps: 10 cfg_file: configs/apis/pose_estimator.cascade_rcnn+hrnet.yamlCAM: 640.0x480.0 10.0Loading model ...Loading model done
成果,
摄像头参数,可见 WebCam 摄像头应用。
更多
- Awesome Human Pose Estimation
- Awesome Skeleton based Action Recognition
GoCoding 集体实际的教训分享,可关注公众号!