当遇到并发服务场景时,咱们能够采取如下措施:
一、同步阻塞IO实现
public class DemoServer extends Thread { private ServerSocket serverSocket; public int getPort() { return serverSocket.getLocalPort(); } public void run() { try { serverSocket = new ServerSocket(0); while (true) { // 十分占用内存资源,每个客户端启用一个线程,非常不合理 Socket socket = serverSocket.accept(); RequesHandler requesHandler = new RequesHandler(socket); requesHandler.start(); } } catch (IOException e) { e.printStackTrace(); } finally { if (serverSocket != null) { try { serverSocket.close(); } catch (IOException e) { e.printStackTrace(); } ; } } } public static void main(String[] args) throws IOException { DemoServer server = new DemoServer(); server.start(); try (Socket client = new Socket(InetAddress.getLocalHost(), server.getPort())) { BufferedReader buferedReader = new BufferedReader(new InputStreamReader(client.getInputStream())); buferedReader.lines().forEach(s -> System.out.println(s)); } }}// 简化实现,不做读取,间接发送字符串class RequesHandler extends Thread { private Socket socket; RequesHandler(Socket socket) { this.socket = socket; } @Override public void run() { try (PrintWriter out = new PrintWriter(socket.getOutputStream());) { out.println("Hello world!"); out.flush(); } catch (Exception e) { e.printStackTrace(); } }}
每次 new 一个线程或者销毁一个线程是有显著的开销的,每个线程都有独自的线程构造,十分占用内存资源,每个客户端启用一个线程是非常不合理的, 因而能够采纳线程池的形式进行优化。
// 也是阻塞IO,采纳线程池的形式解决申请,当来一个新的客户端连贯时,// 将申请 Socket 封装成一个 task ,放到线程池中取执行。serverSocket = new ServerSocket(0);executor = Executors.newFixedThreadPool(8);while (true) { Socket socket = serverSocket.accept(); RequesHandler requesHandler = new RequesHandler(socket); executor.execute(requesHandler);}
二、NIO实现
NIO(非阻塞IO) 多路复用机制
public class NIOServer extends Thread { public void run() { try (Selector selector = Selector.open(); ServerSocketChannel serverSocket = ServerSocketChannel.open();) {// 创立Selector和Channel serverSocket.bind(new InetSocketAddress(InetAddress.getLocalHost(), 8888)); serverSocket.configureBlocking(false); // 注册到Selector,并阐明关注点 serverSocket.register(selector, SelectionKey.OP_ACCEPT); while (true) { selector.select();// 阻塞期待就绪的Channel,这是关键点之一 Set<SelectionKey> selectedKeys = selector.selectedKeys(); Iterator<SelectionKey> iter = selectedKeys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); // 生产零碎中个别会额定进行就绪状态查看 sayHelloWorld((ServerSocketChannel) key.channel()); iter.remove(); } } } catch (IOException e) { e.printStackTrace(); } } private void sayHelloWorld(ServerSocketChannel server) throws IOException { try (SocketChannel client = server.accept();) { ByteBuffer readBuffer = ByteBuffer.allocate(32); client.read(readBuffer); System.out.println("Server received : " + new String(readBuffer.array())); ByteBuffer writeBuffer = ByteBuffer.allocate(128); writeBuffer.put("hello xiaoming".getBytes()); writeBuffer.flip(); client.write(writeBuffer); //client.write(Charset.defaultCharset().encode("Hello world!")); } } public static void main(String[] args) throws IOException { NIOServer server = new NIOServer(); server.start(); try { SocketChannel socketChannel = SocketChannel.open(); socketChannel.connect(new InetSocketAddress(InetAddress.getLocalHost(), 8888)); ByteBuffer writeBuffer = ByteBuffer.allocate(32); ByteBuffer readBuffer = ByteBuffer.allocate(32); writeBuffer.put("hello".getBytes()); writeBuffer.flip(); while (true) { writeBuffer.rewind(); socketChannel.write(writeBuffer);// readBuffer.clear(); socketChannel.read(readBuffer); System.out.println("Client received : " + new String(readBuffer.array())); } } catch (IOException e) { } }/** * @return */private int getPort() { return 8888;}
三、总结
在后面两个例子中:阻塞IO和伪异步IO,一个是应用 new 线程的形式,另外一个是采纳线程池治理的形式, IO都是同步阻塞模式,所以须要多线程以实现多任务处理。
而 NIO 则是利用了单线程轮询事件的机制,通过高效地定位就绪的Channel,来决定做什么,仅仅select阶段是阻塞的,能够无效防止大量客户端连贯时频繁线程切换带来的问题,利用的扩大能力有了十分大的进步。