同步队列构造
AQS应用的同步队列是基于一种CLH锁算法来实现。CLH锁也是一种基于链表的可扩大、高性能、偏心的自旋锁,申请线程只在本地变量上自旋,它一直轮询前驱的状态,如果发现前驱开释了锁就完结自旋.
同步器中蕴含了两个节点类型的援用,一个指向头节点(head),一个指向尾节点(tail),没有获取到锁的线程,退出到队列的过程必须保障线程平安,因而同步器提供了一个基于CAS的设置尾节点的办法CompareAndSetTail(Node expect,Node update)
,它须要传递以后线程认为的尾节点和以后节点,只有设置胜利后,以后节点能力正式与之前的尾节点建设关联。
同步器队列遵循FIFO
,首节点是获取锁胜利的节点,首节点的线程在开释锁时,会唤醒后续节点,而后继节点在胜利获取到锁后,会把本人设置成首节点,设置首节点是由获取锁胜利的线程来实现的,因为只有一个线程能胜利获取到锁,所以设置首节点不须要CAS
。
AQS实现一个线程平安的计数器
自定义互斥锁
package com.rumenz.task.aqs;import java.util.concurrent.locks.AbstractQueuedSynchronizer;public class MyLock { private static final Sync STATE_HOLDER = new Sync(); /** * 通过Sync外部类来持有同步状态, 当状态为1示意锁被持有,0示意锁处于闲暇状态 */ private static class Sync extends AbstractQueuedSynchronizer { /** * 是否被独占, 有两种示意形式 * 1. 能够依据状态,state=1示意锁被占用,0示意闲暇 * 2. 能够依据以后独占锁的线程来判断,即getExclusiveOwnerThread()!=null 示意被独占 */ @Override protected boolean isHeldExclusively() { return getExclusiveOwnerThread() != null; } /** * 尝试获取锁,将状态从0批改为1,操作胜利则将以后线程设置为以后独占锁的线程 */ @Override protected boolean tryAcquire(int arg) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } /** * 开释锁,将状态批改为0 */ @Override protected boolean tryRelease(int arg) { if (getState() == 0) { throw new UnsupportedOperationException(); } setExclusiveOwnerThread(null); setState(0); return true; } } /** * 上面的实现Lock接口须要重写的办法,根本是就是调用外部内Sync的办法 */ public void lock() { STATE_HOLDER.acquire(1); } public void unlock() { STATE_HOLDER.release(1); }}
测试案例
package com.rumenz.task.aqs;import org.omg.Messaging.SYNC_WITH_TRANSPORT;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;public class LockTest { private final static Integer clientTotal=100000; private final static Integer threadTotal=200; private static Count count=new Count(); private static Count unSafe=new Count(); public static void main(String[] args) throws Exception { ExecutorService executorService = Executors.newCachedThreadPool(); final CountDownLatch countDownLatch=new CountDownLatch(clientTotal); final Semaphore semaphore=new Semaphore(threadTotal); for (int i = 0; i < clientTotal; i++) { executorService.execute(()->{ try{ semaphore.acquire(); count.getIncrement(); unSafe.getUnSafeIncrement(); semaphore.release(); }catch (Exception e){ e.printStackTrace(); } countDownLatch.countDown(); }); } countDownLatch.await(); System.out.println("safe:"+count.getCount()); System.out.println("unSafe:"+unSafe.getCount()); executorService.shutdown(); }}class Count{ private MyLock myLock; private volatile int count; Count() { this.myLock=new MyLock(); } int getCount(){ return count; } int getIncrement(){ myLock.lock(); count++; myLock.unlock(); return count; } int getUnSafeIncrement(){ count++; return count; }}
输入后果
safe:100000unSafe:99995
关注微信公众号:【入门小站】,解锁更多知识点