前言需要


接下里介绍的是Java 的设计模式之一:原型模式

当初有一只羊 tom

姓名为: tom, 年龄为:1,色彩为:红色

请编写程序创立和 tom 羊 属性完全相同的 10 只羊

请问你会怎么制作呢?

一、什么是原型模式

原型模式(Prototype 模式)是指:用原型实例指定创建对象的品种,并且通过拷贝这些原型,创立新的对象

原型模式是一种创立型设计模式,容许一个对象再创立另外一个可定制的对象,无需晓得如何创立的细节

工作原理是:通过将一个原型对象传给那个要动员创立的对象,这个要动员创立的对象通过申请原型对象拷贝它们本人来施行创立,即对象.clone()

形象的了解:齐天大圣孙悟空插入猴毛, 变出其它孙大圣

原理结构图阐明
Prototype : 原型类,申明一个克隆本人的接口
ConcretePrototype: 具体的原型类, 实现一个克隆本人的操作
Client: 让一个原型对象克隆本人,从而创立一个新的对象(属性一样)

二、通过示例阐明状况

咱们依照传统形式解决之前提出的克隆羊问题

class Sheep{    public String name;    public int age;    public String color;    public Sheep(String name, int age, String color) {        this.name = name;        this.age = age;        this.color = color;    }    public String   getName() {        return name;    }    public void setName(String name) {        this.name = name;    }    public int getAge() {        return age;    }    public void setAge(int age) {        this.age = age;    }    public String getColor() {        return color;    }    public void setColor(String color) {        this.color = color;    }}

咱们生成一只羊,而后依据这只羊的属性创立十只羊

public static void main(String[] args) {        //传统的办法        Sheep sheep = new Sheep("tom", 1, "红色");        Sheep sheep2 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());        Sheep sheep3 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());        Sheep sheep4 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());                //.........    }

传统的形式的优缺点

  • 长处是比拟好了解,简略易操作
  • 创立新的对象时,总是须要从新获取原始对象的属性,如果创立的对象比较复杂时,效率较低
  • 总是须要从新初始化对象,而不是动静地取得对象运行时的状态, 不够灵便

改良的思路剖析

思路:Java 中 Object 类是所有类的根类,Object 类提供了一个 clone()办法.

该办法能够将一个 Java 对象复制一份,然而须要实现 clone 的Java 类必须要实现一个接口 Cloneable,该接口示意该类可能复制且具备复制的能力 =>原型模式

class Sheep  implements Cloneable {    //省略要害代码....    //克隆该实例,应用默认的clone办法来实现    @Override    protected Object clone(){        Sheep sheep = null;        try {            sheep = (Sheep) super.clone();        } catch (CloneNotSupportedException e) {            e.printStackTrace();        }        return sheep;    }}

那么咱们是应用demo看看,与传统模式有何变动呢?

public static void main(String[] args) {    //传统的办法    Sheep sheep = new Sheep("tom", 1, "红色");    Sheep sheep2 = (Sheep)sheep.clone();    Sheep sheep3 = (Sheep)sheep.clone();    Sheep sheep4 = (Sheep)sheep.clone();    //.........}

咱们在应用原型模式的时候,克隆则就不无需每次new一个对象

并且如果Sheep办法,如何增加了一个字段属性,也会本人实现初始化

class Sheep  implements Cloneable {    private String name;    private int age;    private String color;        private String address;    public Sheep(String name, int age, String color, String address) {        this.name = name;        this.age = age;        this.color = color;        this.address = address;    }    public String getAddress() {        return address;    }    public void setAddress(String address) {        this.address = address;    }}
public static void main(String[] args) {    //传统的办法    Sheep sheep = new Sheep("tom", 1, "红色","内蒙古");    Sheep sheep2 = (Sheep)sheep.clone();    Sheep sheep3 = (Sheep)sheep.clone();    Sheep sheep4 = (Sheep)sheep.clone();    //.........}

三、Spring框架源码解析

Spring 中原型 bean 的创立,就是原型模式的利用

咱们应用一个类来举例说明一下

class Monster{    private Integer id = 10;    private String nickName = "牛魔王";    private String skill = "芭蕉扇";    public Monster() {        System.out.println("monster 创立....");    }        public Monster(Integer id, String nickName, String skill) {        this.id = id;        this.nickName = nickName;        this.skill = skill;    }    public Integer getId() {        return id;    }    public void setId(Integer id) {        this.id = id;    }    public String getNickName() {        return nickName;    }    public void setNickName(String nickName) {        this.nickName = nickName;    }    public String getSkill() {        return skill;    }    public void setSkill(String skill) {        this.skill = skill;    }}

同时咱们这里还有一个bean的xml文件配置

<beans xmlns="http://www.springframework.org/schema/beans"    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"     xmlns:p="http://www.springframework.org/schema/p"    xmlns:context="http://www.springframework.org/schema/context"    xmlns:mvc="http://www.springframework.org/schema/mvc"    xmlns:util="http://www.springframework.org/schema/util"     xmlns:task="http://www.springframework.org/schema/task"    xsi:schemaLocation="           http://www.springframework.org/schema/mvc           http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd           http://www.springframework.org/schema/beans              http://www.springframework.org/schema/beans/spring-beans-3.0.xsd           http://www.springframework.org/schema/context              http://www.springframework.org/schema/context/spring-context-3.0.xsd           http://www.springframework.org/schema/util              http://www.springframework.org/schema/util/spring-util-3.0.xsd           http://www.springframework.org/schema/task            http://www.springframework.org/schema/task/spring-task-3.2.xsd"                <!--咱们这里的scope="prototype" 即原型模式来创立-->        <bean id="id01" class="com.spring.bean.Monster" scope="prototype"/></beans>

接下来咱们应用demo,测试原型模式下的bean,获取对象是否相等

public static void main(String[] args) {    ApplicationContext applicationContext = new ClassPathXmlApplicationContext("bean.xml");    Object bean1 =applicationContext.getBean("id01");    System.out.println("bean1 = "+bean1);    Object bean2 =applicationContext.getBean("id01");    System.out.println("bean2 = "+bean2);    System.out.println(bean1 == bean2);}运行后果如下:monster 创立....bean1=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'}monster 创立....bean2=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'}false

阐明这两个对象,他的变量雷同,然而不是同一个对象,返回了false

那么咱们须要晓得他是在哪里用到了原型呢?咱们debug看看

public abstract class AbstractApplicationContext extends DefaultResourceLoader implements ConfigurableApplicationContext, DisposableBean {    //省略其余要害代码....    public Object getBean(String name) throws BeansException {        return this.getBeanFactory().getBean(name);    }    public <T> T getBean(String name, Class<T> requiredType) throws BeansException {        return this.getBeanFactory().getBean(name, requiredType);    }    public <T> T getBean(Class<T> requiredType) throws BeansException {        return this.getBeanFactory().getBean(requiredType);    }    public Object getBean(String name, Object... args) throws BeansException {        return this.getBeanFactory().getBean(name, args);    }    public boolean containsBean(String name) {        return this.getBeanFactory().containsBean(name);    }    public boolean isSingleton(String name) throws NoSuchBeanDefinitionException {        return this.getBeanFactory().isSingleton(name);    }    public boolean isPrototype(String name) throws NoSuchBeanDefinitionException {        return this.getBeanFactory().isPrototype(name);    }}

咱们发现他是采纳BeanFactory里的getBean,那么我进到外面去看

public abstract class AbstractRefreshableApplicationContext extends AbstractApplicationContext {    //省略其余要害代码....    public final ConfigurableListableBeanFactory getBeanFactory() {        synchronized(this.beanFactoryMonitor) {            if (this.beanFactory == null) {                throw new IllegalStateException("BeanFactory not initialized or already closed - call 'refresh' before accessing beans via the ApplicationContext");            } else {                return this.beanFactory;            }        }    }}

返回工厂后,咱们就进BeanFactory的getBean办法里看看

public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {        //省略其余要害代码....    public AbstractBeanFactory() {}    public AbstractBeanFactory(BeanFactory parentBeanFactory) {        this.parentBeanFactory = parentBeanFactory;    }    public Object getBean(String name) throws BeansException {        return this.doGetBean(name, (Class)null, (Object[])null, false);    }    public <T> T getBean(String name, Class<T> requiredType) throws BeansException {        return this.doGetBean(name, requiredType, (Object[])null, false);    }    public Object getBean(String name, Object... args) throws BeansException {        return this.doGetBean(name, (Class)null, args, false);    }    public <T> T getBean(String name, Class<T> requiredType, Object... args) throws BeansException {        return this.doGetBean(name, requiredType, args, false);    }    }

发现是调用doGetBean办法,那咱们再进去doGetBean办法看看

public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {        //省略其余要害代码....        protected <T> T doGetBean(String name, Class<T> requiredType, final Object[] args, boolean typeCheckOnly) throws BeansException {        final String beanName = this.transformedBeanName(name);        Object sharedInstance = this.getSingleton(beanName);        Object bean;        if (sharedInstance != null && args == null) {            if (this.logger.isDebugEnabled()) {                if (this.isSingletonCurrentlyInCreation(beanName)) {                    this.logger.debug("Returning eagerly cached instance of singleton bean '" + beanName + "' that is not fully initialized yet - a consequence of a circular reference");                } else {                    this.logger.debug("Returning cached instance of singleton bean '" + beanName + "'");                }            }            bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, (RootBeanDefinition)null);        } else {            if (this.isPrototypeCurrentlyInCreation(beanName)) {                throw new BeanCurrentlyInCreationException(beanName);            }            BeanFactory parentBeanFactory = this.getParentBeanFactory();            if (parentBeanFactory != null && !this.containsBeanDefinition(beanName)) {                String nameToLookup = this.originalBeanName(name);                if (args != null) {                    return parentBeanFactory.getBean(nameToLookup, args);                }                return parentBeanFactory.getBean(nameToLookup, requiredType);            }            if (!typeCheckOnly) {                this.markBeanAsCreated(beanName);            }            try {                final RootBeanDefinition mbd = this.getMergedLocalBeanDefinition(beanName);                this.checkMergedBeanDefinition(mbd, beanName, args);                String[] dependsOn = mbd.getDependsOn();                String[] arr$;                if (dependsOn != null) {                    arr$ = dependsOn;                    int len$ = dependsOn.length;                    for(int i$ = 0; i$ < len$; ++i$) {                        String dependsOnBean = arr$[i$];                        this.getBean(dependsOnBean);                        this.registerDependentBean(dependsOnBean, beanName);                    }                }                if (mbd.isSingleton()) {                    sharedInstance = this.getSingleton(beanName, new ObjectFactory<Object>() {                        public Object getObject() throws BeansException {                            try {                                return AbstractBeanFactory.this.createBean(beanName, mbd, args);                            } catch (BeansException var2) {                                AbstractBeanFactory.this.destroySingleton(beanName);                                throw var2;                            }                        }                    });                    bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, mbd);                } else if (mbd.isPrototype()) {                    arr$ = null;                    Object prototypeInstance;                    try {                        this.beforePrototypeCreation(beanName);                        prototypeInstance = this.createBean(beanName, mbd, args);                    } finally {                        this.afterPrototypeCreation(beanName);                    }                    bean = this.getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);                } else {                    String scopeName = mbd.getScope();                    Scope scope = (Scope)this.scopes.get(scopeName);                    if (scope == null) {                        throw new IllegalStateException("No Scope registered for scope '" + scopeName + "'");                    }                    try {                        Object scopedInstance = scope.get(beanName, new ObjectFactory<Object>() {                            public Object getObject() throws BeansException {                                AbstractBeanFactory.this.beforePrototypeCreation(beanName);                                Object var1;                                try {                                    var1 = AbstractBeanFactory.this.createBean(beanName, mbd, args);                                } finally {                                    AbstractBeanFactory.this.afterPrototypeCreation(beanName);                                }                                return var1;                            }                        });                        bean = this.getObjectForBeanInstance(scopedInstance, name, beanName, mbd);                    } catch (IllegalStateException var21) {                        throw new BeanCreationException(beanName, "Scope '" + scopeName + "' is not active for the current thread; " + "consider defining a scoped proxy for this bean if you intend to refer to it from a singleton", var21);                    }                }            } catch (BeansException var23) {                this.cleanupAfterBeanCreationFailure(beanName);                throw var23;            }        }        if (requiredType != null && bean != null && !requiredType.isAssignableFrom(bean.getClass())) {            try {                return this.getTypeConverter().convertIfNecessary(bean, requiredType);            } catch (TypeMismatchException var22) {                if (this.logger.isDebugEnabled()) {                    this.logger.debug("Failed to convert bean '" + name + "' to required type [" + ClassUtils.getQualifiedName(requiredType) + "]", var22);                }                throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());            }        } else {            return bean;        }    }}

代码很多,我这里采纳图片的形式标注进去

对于在spring框架中原型模式,因为小编程度无限,暂且先理解这么多

四、浅拷贝和深拷贝

浅拷贝的介绍

对于数据类型是根本数据类型的成员变量,浅拷贝会间接进行值传递,也就是将该属性值复制一份给新的对象

对于数据类型是援用数据类型的成员变量,比如说成员变量是某个数组、某个类的对象等,那么浅拷贝会进行援用传递,也就是只是将该成员变量的援用值(内存地址)复制一份给新的对象

为实际上两个对象的该成员变量都指向同一个实例。

在这种状况下,在一个对象中批改该成员变量会影响到另一个对象的该成员变量值

比如说之前克隆羊,咱们增加一个对象字段

class Sheep  implements Cloneable {    //省略其余关键性代码.....    private Sheep friend;        public Sheep(String name, int age, String color, String address, Sheep friend) {        this.name = name;        this.age = age;        this.color = color;        this.address = address;        this.friend = friend;    }        public Sheep getFriend() {        return friend;    }    public void setFriend(Sheep friend) {        this.friend = friend;    }}

这时咱们创立demo ,一起看看领会援用拷贝地址指向新对象

public static void main(String[] args) {        Sheep friend = new Sheep("jack", 2, "彩色","内蒙古");        Sheep sheep = new Sheep("tom", 1, "红色","内蒙古",friend);        Sheep sheep2 = (Sheep)sheep.clone();        Sheep sheep3 = (Sheep)sheep.clone();        Sheep sheep4 = (Sheep)sheep.clone();        System.out.println(sheep2 + "hashCode"+sheep2.friend.hashCode());        System.out.println(sheep3+ "hashCode"+sheep3.friend.hashCode());        System.out.println(sheep4+ "hashCode"+sheep4.friend.hashCode());    }    运行后果如下:Sheep{name='tom', age=1, color='红色', address='内蒙古}hashCode460141958Sheep{name='tom', age=1, color='红色', address='内蒙古}hashCode460141958Sheep{name='tom', age=1, color='红色', address='内蒙古}hashCode460141958

有没有发现,咱们输入好敌人的时候,都是指向同一个地址

这证实咱们没有真正的拷贝一个好敌人的对象,咱们称这为浅拷贝

浅拷贝是应用默认的 clone()办法来实现:就是sheep = (Sheep) super.clone();

深拷贝根本介绍

复制对象的所有根本数据类型的成员变量值

为所有援用数据类型的成员变量申请存储空间,并复制每个援用数据类型成员变量所援用的对象,直到该对象可达的所有对象。也就是说,对象进行深拷贝要对整个对象(包含对象的援用类型)进行拷贝

深拷贝实现形式 1:重写 clone 办法来实现深拷贝

深拷贝实现形式 2:通过对象序列化实现深拷贝(举荐)

咱们通过新的示例类来举例说明这两种状况

class DeepCloneableTarget implements Cloneable {    public String name; //String 属 性    public String cloneClass; //String 属 性    public DeepCloneableTarget() {        super();    }        public DeepCloneableTarget(String name, String cloneClass) {        this.name = name;        this.cloneClass = cloneClass;    }    public String getName() {        return name;    }    public void setName(String name) {        this.name = name;    }    public String getCloneClass() {        return cloneClass;    }    public void setCloneClass(String cloneClass) {        this.cloneClass = cloneClass;    }    @Override    protected Object clone() throws CloneNotSupportedException {        return super.clone();    }}

咱们应用默认的拷贝办法,当初咱们增加多一个类增加对象援用

class DeepProtoType implements  Cloneable {    public String name; //String 属 性    public DeepCloneableTarget deepCloneableTarget;// 援用类型    public DeepProtoType() {}    public DeepProtoType(String name, DeepCloneableTarget deepCloneableTarget) {        this.name = name;        this.deepCloneableTarget = deepCloneableTarget;    }    public String getName() {        return name;    }    public void setName(String name) {        this.name = name;    }    public DeepCloneableTarget getDeepCloneableTarget() {        return deepCloneableTarget;    }    public void setDeepCloneableTarget(DeepCloneableTarget deepCloneableTarget) {        this.deepCloneableTarget = deepCloneableTarget;    }}

那么咱们的第一种形式是:采纳重写 clone 办法来实现深拷贝

class DeepProtoType implements  Cloneable {    //省略其余要害代码....    @Override    protected Object clone() throws CloneNotSupportedException {        //实现对根本数据类型和String类型的拷贝        Object deep = null;        deep = super.clone();        //再实现对类里的援用类型拷贝        DeepProtoType deepProtoType = (DeepProtoType)deep;        deepProtoType.setDeepCloneableTarget((DeepCloneableTarget)deepCloneableTarget.clone());        return deepProtoType;    }}

接下里咱们应用demo 看看第一种形式的深拷贝成果怎么样?

public static void main(String[] args) {    DeepCloneableTarget target = new DeepCloneableTarget("大牛", "大牛的类");    DeepProtoType p1 = new DeepProtoType();    p1.setName("小明");    p1.setDeepCloneableTarget(target);    try {        //形式 1  实现深拷贝        DeepProtoType p2 = (DeepProtoType)p1.clone();        System.out.println("p1.name = " + p1.name + " p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode());        System.out.println("p2.name = " + p1.name + " p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());    } catch (CloneNotSupportedException e) {        e.printStackTrace();    }}运行后果如下:p1.name = 小明 p1.deepCloneableTarget=460141958p2.name = 小明 p2.deepCloneableTarget=1163157884

这种形式采纳先拷贝根本数据类型再拷贝援用类型

1.这种形式如果DeepCloneableTarget里也有援用类型的类,那么它也须要重写这个办法,这就会导致多重重写

2.如果多个类的援用就会导致很繁琐,工作量微小,关系简单

论断:只适宜一层关系的援用,理论不太举荐

那么咱们的第二种形式是:通过对象序列化实现深拷贝(举荐)

应用序列化的形式,咱们须要实现Serializable接口

public class DeepProtoType implements Serializable, Cloneable{        //省略其余要害代码....}public class DeepCloneableTarget implements Serializable, Cloneable{    //省略其余要害代码....}
public class DeepProtoType implements Serializable, Cloneable{    //省略其余要害代码....        //深拷贝 - 形式 2 通过对象的序列化实现 (举荐)    public Object deepClone() {        //创立流对象        ByteArrayOutputStream bos = null;        ObjectOutputStream oos = null;        ByteArrayInputStream bis = null;        ObjectInputStream ois = null;        try {            //序列化            bos = new ByteArrayOutputStream();            oos = new ObjectOutputStream(bos);            oos.writeObject(this); //以后这个对象以对象流的形式输入            //反序列化            bis = new ByteArrayInputStream(bos.toByteArray());            ois = new ObjectInputStream(bis);            DeepProtoType copyObj = (DeepProtoType) ois.readObject();            return copyObj;        } catch (Exception e) {            return null;        } finally {            //敞开流            try {                bos.close();                oos.close();                bis.close();                ois.close();            } catch (Exception e2) {            }        }    }    }

接下里咱们应用demo 看看第二种形式的深拷贝成果怎么样?

public static void main(String[] args) {        DeepCloneableTarget target = new DeepCloneableTarget("大牛", "小牛");        DeepProtoType p1 = new DeepProtoType();        p1.setName("小明");        p1.setDeepCloneableTarget(target);        //形式 2  实现深拷贝        DeepProtoType p2 = (DeepProtoType) p1.deepClone();        System.out.println("p1.name = " + p1.name + " p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode());        System.out.println("p2.name = " + p1.name + " p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());}运行后果如下:p1.name = 小明 p1.deepCloneableTarget=1836019240p2.name = 小明 p2.deepCloneableTarget=363771819

五、原型模式的注意事项和细节

创立新的对象比较复杂时,能够利用原型模式简化对象的创立过程,同时也可能提高效率

不必从新初始化对象,而是动静地取得对象运行时的状态

如果原始对象发生变化(减少或者缩小属性),其它克隆对象的也会产生相应的变动,无需批改代码

在实现深克隆的时候可能须要比较复杂的代码

毛病:须要为每一个类装备一个克隆办法,这对全新的类来说不是很难,但对已有的类进行革新时,须要批改其源代码,违反了 ocp 准则,这点请留神.

参考资料


尚硅谷:设计模式(韩顺平老师):单例模式

Refactoring.Guru:《深刻设计模式》