前言


我负责的有几个零碎随着业务量的增长,存储在MySQL中的数据日益剧增,我过后就想当初的业务方不讲武德,搞偷袭,趁我没反馈过去把很多表,很快,很快啊都打到了亿级别,我粗心了,没有闪,这就导致跟其Join的表的SQL变得很慢,对的利用接口的response time也变长了,影响了用户体验。

预先我找到业务方,我批评了他们跟他们说要讲武德,连忙跟我赔罪,这个事件才就此作罢,走的时候我对他们说下次不要这样了,耗子尾汁,好好反思。

骂归骂,事件还是得解决,时候我剖析起因发现,发现有些表的数据量增长很快,对应SQL扫描了很多有效数据,导致SQL慢了下来,通过确认之后,这些大表都是一些流水、记录、日志类型数据,只须要保留1到3个月,此时须要对表做数据清理实现瘦身,个别都会想到用insert + delete的形式去清理。

这篇文章我会从InnoDB存储空间散布,delete对性能的影响,以及优化倡议方面解释为什么不倡议delete删除数据。

InnoDB存储架构

从这张图能够看到,InnoDB存储构造次要包含两局部:逻辑存储构造和物理存储构造。

逻辑上是由表空间tablespace —> 段segment或者inode —> 区Extent ——>数据页Page形成,Innodb逻辑治理单位是segment,空间调配的最小单位是extent,每个segment都会从表空间FREE_PAGE中调配32个page,当这32个page不够用时,会依照以下准则进行扩大:如果以后小于1个extent,则扩大到1个extent;当表空间小于32MB时,每次扩大一个extent;表空间大于32MB,每次扩大4个extent。

物理上次要由零碎用户数据文件,日志文件组成,数据文件次要存储MySQL字典数据和用户数据,日志文件记录的是data page的变更记录,用于MySQL Crash时的复原。

Innodb表空间

InnoDB存储包含三类表空间:零碎表空间,用户表空间,Undo表空间。

零碎表空间:次要存储MySQL外部的数据字典数据,如information_schema下的数据。

用户表空间:当开启innodb_file_per_table=1时,数据表从零碎表空间独立进去存储在以table_name.ibd命令的数据文件中,构造信息存储在table_name.frm文件中。

Undo表空间:存储Undo信息,如快照统一读和flashback都是利用undo信息。

从MySQL 8.0开始容许用户自定义表空间,具体语法如下:

CREATE TABLESPACE tablespace_name    ADD DATAFILE 'file_name'               #数据文件名    USE LOGFILE GROUP logfile_group        #自定义日志文件组,个别每组2个logfile。    [EXTENT_SIZE [=] extent_size]          #区大小    [INITIAL_SIZE [=] initial_size]        #初始化大小     [AUTOEXTEND_SIZE [=] autoextend_size]  #主动扩宽尺寸    [MAX_SIZE [=] max_size]                #单个文件最大size,最大是32G。    [NODEGROUP [=] nodegroup_id]           #节点组    [WAIT]    [COMMENT [=] comment_text]    ENGINE [=] engine_name复制代码

这样的益处是能够做到数据的冷热拆散,别离用HDD和SSD来存储,既能实现数据的高效拜访,又能节约老本,比方能够增加两块500G硬盘,通过创立卷组vg,划分逻辑卷lv,创立数据目录并mount相应的lv,假如划分的两个目录别离是/hot_data 和 /cold_data。

这样就能够将外围的业务表如用户表,订单表存储在高性能SSD盘上,一些日志,流水表存储在一般的HDD上,次要的操作步骤如下:

#创立热数据表空间create tablespace tbs_data_hot add datafile '/hot_data/tbs_data_hot01.dbf' max_size 20G;#创立外围业务表存储在热数据表空间create table booking(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_hot;#创立冷数据表空间create tablespace tbs_data_cold add datafile '/hot_data/tbs_data_cold01.dbf' max_size 20G;#创立日志,流水,备份类的表存储在冷数据表空间create table payment_log(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_cold;#能够挪动表到另一个表空间alter table payment_log tablespace tbs_data_hot;复制代码

Inndob存储散布

创立空表查看空间变动

mysql> create table user(id bigint not null primary key auto_increment,     -> name varchar(20) not null default '' comment '姓名',     -> age tinyint not null default 0 comment 'age',     -> gender char(1) not null default 'M'  comment '性别',    -> phone varchar(16) not null default '' comment '手机号',    -> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创立工夫',    -> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '批改工夫'    -> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';Query OK, 0 rows affected (0.26 sec)复制代码
# ls -lh user1.ibd -rw-r----- 1 mysql mysql 96K Nov  6 12:48 user.ibd复制代码

设置参数innodb_file_per_table=1时,创立表时会主动创立一个segment,同时调配一个extent,蕴含32个data page的来存储数据,这样创立的空表默认大小就是96KB,extent应用完之后会申请64个连贯页,这样对于一些小表,或者undo segment,能够在开始时申请较少的空间,节俭磁盘容量的开销。

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibdpage offset 00000000, page type <File Space Header>page offset 00000001, page type <Insert Buffer Bitmap>page offset 00000002, page type <File Segment inode>page offset 00000003, page type <B-tree Node>, page level <0000>page offset 00000000, page type <Freshly Allocated Page>page offset 00000000, page type <Freshly Allocated Page>Total number of page: 6:      #总共调配的页数Freshly Allocated Page: 2     #可用的数据页Insert Buffer Bitmap: 1       #插入缓冲页File Space Header: 1          #文件空间头B-tree Node: 1                #数据页File Segment inode: 1         #文件端inonde,如果是在ibdata1.ibd上会有多个inode。复制代码

插入数据后的空间变动

mysql> DELIMITER $$mysql> CREATE PROCEDURE insert_user_data(num INTEGER)     -> BEGIN    ->     DECLARE v_i int unsigned DEFAULT 0;    -> set autocommit= 0;    -> WHILE v_i < num DO    ->    insert into user(`name`, age, gender, phone) values (CONCAT('lyn',v_i), mod(v_i,120), 'M', CONCAT('152',ROUND(RAND(1)*100000000)));    ->  SET v_i = v_i+1;    -> END WHILE;    -> commit;    -> END $$Query OK, 0 rows affected (0.01 sec)mysql> DELIMITER ;#插入10w数据mysql> call insert_user_data(100000);Query OK, 0 rows affected (6.69 sec)复制代码
# ls -lh user.ibd-rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd # python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibdpage offset 00000000, page type <File Space Header>page offset 00000001, page type <Insert Buffer Bitmap>page offset 00000002, page type <File Segment inode>page offset 00000003, page type <B-tree Node>, page level <0001>   #减少了一个非叶子节点,树的高度从1变为2.........................................................page offset 00000000, page type <Freshly Allocated Page>Total number of page: 896:Freshly Allocated Page: 493Insert Buffer Bitmap: 1File Space Header: 1B-tree Node: 400File Segment inode: 1复制代码

delete数据后的空间变动

mysql> select min(id),max(id),count(*) from user;+---------+---------+----------+| min(id) | max(id) | count(*) |+---------+---------+----------+|       1 |  100000 |   100000 |+---------+---------+----------+1 row in set (0.05 sec)#删除50000条数据,实践上空间应该从14MB变长7MB左右。mysql> delete from user limit 50000;Query OK, 50000 rows affected (0.25 sec)#数据文件大小仍然是14MB,没有放大。# ls -lh /data2/mysql/test/user1.ibd -rw-r----- 1 mysql mysql 14M Nov  6 13:22 /data2/mysql/test/user.ibd#数据页没有被回收。# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibdpage offset 00000000, page type <File Space Header>page offset 00000001, page type <Insert Buffer Bitmap>page offset 00000002, page type <File Segment inode>page offset 00000003, page type <B-tree Node>, page level <0001>........................................................page offset 00000000, page type <Freshly Allocated Page>Total number of page: 896:Freshly Allocated Page: 493Insert Buffer Bitmap: 1File Space Header: 1B-tree Node: 400File Segment inode: 1#在MySQL外部是标记删除,复制代码
mysql> use information_schema;Database changedmysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE,  B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = 'test/user1';+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+| TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+|        1283 |     1207 | test/user | Barracuda   | Dynamic    | Single     |     2236 | PRIMARY    |       3 |          3 |+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+1 row in set (0.01 sec)PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是汇集索引。 INDEX_TYPE取值如下:0 = nonunique secondary index; 1 = automatically generated clustered index (GEN_CLUST_INDEX); 2 = unique nonclustered index; 3 = clustered index; 32 = full-text index;#膨胀空间再后进行察看复制代码

MySQL外部不会真正删除空间,而且做标记删除,行将delflag:N批改为delflag:Y,commit之后会会被purge进入删除链表,如果下一次insert更大的记录,delete之后的空间不会被重用,如果插入的记录小于等于delete的记录空会被重用,这块内容能够通过知数堂的innblock工具进行剖析。

Innodb中的碎片

碎片的产生

咱们晓得数据存储在文件系统上的,总是不能100%利用调配给它的物理空间,删除数据会在页面上留下一些”空洞”,或者随机写入(汇集索引非线性减少)会导致页决裂,页决裂导致页面的利用空间少于50%,另外对表进行增删改会引起对应的二级索引值的随机的增删改,也会导致索引构造中的数据页面上留下一些"空洞",尽管这些空洞有可能会被反复利用,但终究会导致局部物理空间未被应用,也就是碎片。

同时,即使是设置了填充因子为100%,Innodb也会被动留下page页面1/16的空间作为预留应用(An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth)避免update带来的行溢出。

mysql> select table_schema,    ->        table_name,ENGINE,    ->        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,    ->        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio    -> from information_schema.TABLES where  TABLE_SCHEMA= 'test'    -> and TABLE_NAME= 'user';+--------------+------------+--------+----------+------------+---------+----------+---------+------------+| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |+--------------+------------+--------+----------+------------+---------+----------+---------+------------+| test         | user      | InnoDB |        4 |      50000 |       4 |        0 |       6 |     149.42 |+--------------+------------+--------+----------+------------+---------+----------+---------+------------+1 row in set (0.00 sec)复制代码

其中data_free是调配了未应用的字节数,并不能阐明齐全是碎片空间。

碎片的回收

对于InnoDB的表,能够通过以下命令来回收碎片,开释空间,这个是随机读IO操作,会比拟耗时,也会阻塞表上失常的DML运行,同时须要占用额定更多的磁盘空间,对于RDS来说,可能会导致磁盘空间霎时爆满,实例霎时被锁定,利用无奈做DML操作,所以禁止在线上环境去执行。

#执行InnoDB的碎片回收mysql> alter table user engine=InnoDB;Query OK, 0 rows affected (9.00 sec)Records: 0  Duplicates: 0  Warnings: 0 ##执行完之后,数据文件大小从14MB升高到10M。# ls -lh /data2/mysql/test/user1.ibd -rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd复制代码
mysql> select table_schema,        table_name,ENGINE,        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where  TABLE_SCHEMA= 'test' and TABLE_NAME= 'user';+--------------+------------+--------+----------+------------+---------+----------+---------+------------+| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |+--------------+------------+--------+----------+------------+---------+----------+---------+------------+| test         | user      | InnoDB |        5 |      50000 |       5 |        0 |       2 |      44.29 |+--------------+------------+--------+----------+------------+---------+----------+---------+------------+1 row in set (0.00 sec)复制代码

delete对SQL的影响

未删除前的SQL执行状况

#插入100W数据mysql> call insert_user_data(1000000);Query OK, 0 rows affected (35.99 sec)#增加相干索引mysql> alter table user add index idx_name(name), add index idx_phone(phone);Query OK, 0 rows affected (6.00 sec)Records: 0  Duplicates: 0  Warnings: 0#表上索引统计信息mysql> show index from user;+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name  | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| user  |          0 | PRIMARY   |            1 | id          | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               || user  |          1 | idx_name  |            1 | name        | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               || user  |          1 | idx_phone |            1 | phone       | A         |           2 |     NULL | NULL   |      | BTREE      |         |               |+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+3 rows in set (0.00 sec)#重置状态变量计数mysql> flush status;Query OK, 0 rows affected (0.00 sec)#执行SQL语句mysql> select id, age ,phone from user where name like 'lyn12%';+--------+-----+-------------+| id     | age | phone       |+--------+-----+-------------+|    124 |   3 | 15240540354 ||   1231 |  30 | 15240540354 ||  12301 |  60 | 15240540354 |.............................| 129998 |  37 | 15240540354 || 129999 |  38 | 15240540354 || 130000 |  39 | 15240540354 |+--------+-----+-------------+11111 rows in set (0.03 sec)mysql> explain select id, age ,phone from user where name like 'lyn12%';+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+1 row in set (0.00 sec)#查看相干状态呢变量mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');+-------------------+----------------+| VARIABLE_NAME     | VARIABLE_VALUE |+-------------------+----------------+| HANDLER_READ_NEXT | 11111          |    #申请读的行数| INNODB_DATA_READS | 7868409        |    #数据物理读的总数| INNODB_PAGES_READ | 7855239        |    #逻辑读的总数| LAST_QUERY_COST   | 10.499000      |    #SQL语句的老本COST,次要包含IO_COST和CPU_COST。+-------------------+----------------+4 rows in set (0.00 sec)复制代码

删除后的SQL执行状况

#删除50w数据mysql> delete from user limit 500000;Query OK, 500000 rows affected (3.70 sec)#剖析表统计信息mysql> analyze table user;+-----------+---------+----------+----------+| Table     | Op      | Msg_type | Msg_text |+-----------+---------+----------+----------+| test.user | analyze | status   | OK       |+-----------+---------+----------+----------+1 row in set (0.01 sec)#重置状态变量计数mysql> flush status;Query OK, 0 rows affected (0.01 sec)mysql> select id, age ,phone from user where name like 'lyn12%';Empty set (0.05 sec)mysql> explain select id, age ,phone from user where name like 'lyn12%';+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+1 row in set (0.00 sec)mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');+-------------------+----------------+| VARIABLE_NAME     | VARIABLE_VALUE |+-------------------+----------------+| HANDLER_READ_NEXT | 0              || INNODB_DATA_READS | 7868409        || INNODB_PAGES_READ | 7855239        || LAST_QUERY_COST   | 10.499000      |+-------------------+----------------+4 rows in set (0.00 sec)复制代码

后果统计分析

操作

COST

物理读次数

逻辑读次数

扫描行数

返回行数

执行工夫

初始化插入100W

10.499000

7868409

7855239

22226

11111

30ms

100W随机删除50W

10.499000

7868409

7855239

22226

0

50ms

这也阐明对一般的大表,想要通过delete数据来对表进行瘦身是不事实的,所以在任何时候不要用delete去删除数据,应该应用优雅的标记删除。

delete优化倡议

管制业务账号权限

对于一个大的零碎来说,须要依据业务特点去拆分子系统,每个子系统能够看做是一个service,例如美团APP,下面有很多服务,外围的服务有用户服务user-service,搜寻服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创立独自账号,同时只授予DML权限且没有delete权限,同时禁止跨库拜访。

#创立用户数据库并受权create database mt_user charset utf8mb4;grant USAGE, SELECT, INSERT, UPDATE ON mt_user.*  to 'w_user'@'%' identified by 't$W*g@gaHTGi123456';flush privileges;复制代码

delete改为标记删除

在MySQL数据库建模标准中有4个公共字段,基本上每个表必须有的,同时在create_time列要创立索引,有两方面的益处:

  1. 一些查问业务场景都会有一个默认的时间段,比方7天或者一个月,都是通过create_time去过滤,走索引扫描更快。
  2. 一些外围的业务表须要以T +1的形式抽取数据仓库中,比方每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',`is_deleted` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否逻辑删除:0:未删除,1:已删除',`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创立工夫',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '批改工夫'#有了删除标记,业务接口的delete操作就能够转换为updateupdate user set is_deleted = 1 where user_id = 1213;#查问的时候须要带上is_deleted过滤select id, age ,phone from user where is_deleted = 0 and name like 'lyn12%';复制代码

数据归档形式

通用数据归档办法

#1. 创立归档表,个别在原表名前面增加_bak。CREATE TABLE `ota_order_bak` (  `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '主键',  `order_id` varchar(255) DEFAULT NULL COMMENT '订单id',  `ota_id` varchar(255) DEFAULT NULL COMMENT 'ota',  `check_in_date` varchar(255) DEFAULT NULL COMMENT '入住日期',  `check_out_date` varchar(255) DEFAULT NULL COMMENT '离店日期',  `hotel_id` varchar(255) DEFAULT NULL COMMENT '酒店ID',  `guest_name` varchar(255) DEFAULT NULL COMMENT '顾客',  `purcharse_time` timestamp NULL DEFAULT NULL COMMENT '购买工夫',  `create_time` datetime DEFAULT NULL,  `update_time` datetime DEFAULT NULL,  `create_user` varchar(255) DEFAULT NULL,  `update_user` varchar(255) DEFAULT NULL,  `status` int(4) DEFAULT '1' COMMENT '状态 : 1 失常 , 0 删除',  `hotel_name` varchar(255) DEFAULT NULL,  `price` decimal(10,0) DEFAULT NULL,  `remark` longtext,  PRIMARY KEY (`id`),  KEY `IDX_order_id` (`order_id`) USING BTREE,  KEY `hotel_name` (`hotel_name`) USING BTREE,  KEY `ota_id` (`ota_id`) USING BTREE,  KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,  KEY `IDX_create_time` (`create_time`) USING BTREE) ENGINE=InnoDB DEFAULT CHARSET=utf8PARTITION BY RANGE (to_days(create_time)) ( PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));#2. 插入原表中有效的数据(须要跟开发同学确认数据保留范畴)create table tbl_p201808 as select * from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59';#3. 跟归档表分区做分区替换alter table ota_order_bak exchange partition p201808 with table tbl_p201808; #4. 删除原表中曾经标准的数据delete from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59' limit 3000;复制代码

优化后的归档形式

#1. 创立两头表CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8PARTITION BY RANGE (to_days(create_time)) ( PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));#2. 插入原表中无效的数据,如果数据量在100W左右能够在业务低峰期直接插入,如果比拟大,倡议采纳dataX来做,能够管制频率和大小,之前我这边用Go封装了dataX能够实现主动生成json文件,自定义大小去执行。insert into ota_order_2020 select * from ota_order where create_time between '2020-08-01 00:00:00' and '2020-08-31 23:59:59';#3. 表重命名alter table ota_order rename to ota_order_bak;  alter table ota_order_2020 rename to ota_order;#4. 插入差别数据insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);#5. ota_order_bak革新成分区表,如果表比拟大不倡议间接革新,能够先创立好分区表,通过dataX把导入进去即可。#6. 后续的归档办法#创立两头广泛表create table ota_order_mid like ota_order;#替换原表有效数据分区到一般表alter table ota_order exchange partition p201808 with table ota_order_mid; ##替换一般表数据到归档表的相应分区alter table ota_order_bak exchange partition p201808 with table ota_order_mid; 复制代码

这样原表和归档表都是按月的分区表,只须要创立一个两头一般表,在业务低峰期做两次分区替换,既能够删除有效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行打算。

总结

通过从InnoDB存储空间散布,delete对性能的影响能够看到,delete物理删除既不能开释磁盘空间,而且会产生大量的碎片,导致索引频繁决裂,影响SQL执行打算的稳定性;

同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上失常的DML操作。

在业务代码层面,应该做逻辑标记删除,防止物理删除;为了实现数据归档需要,能够用采纳MySQL分区表个性来实现,都是DDL操作,没有碎片产生。

另外一个比拟好的计划采纳Clickhouse,对有生命周期的数据表能够应用Clickhouse存储,利用其TTL个性实现有效数据主动清理。