案例一:实现topic之间的流传输

一、Kafka Java代码

创立maven过程,导入以下依赖

<dependency>  <groupId>org.apache.kafka</groupId>  <artifactId>kafka_2.11</artifactId>  <version>2.0.0</version></dependency><dependency>  <groupId>org.apache.kafka</groupId>  <artifactId>kafka-streams</artifactId>  <version>2.0.0</version></dependency>

代码局部

public class MyStream {    public static void main(String[] args) {        Properties prop = new Properties();        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"mystream");        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.247.201:9092");        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,Serdes.String().getClass());        // 创立流结构器        StreamsBuilder builder = new StreamsBuilder();        // 构建好builder 将mystreamin topic中的数据写入到 mystreamout topic中        builder.stream("mystreamin").to("mystreamout");        final Topology topo = builder.build();        final KafkaStreams streams = new KafkaStreams(topo, prop);        final CountDownLatch latch = new CountDownLatch(1);        Runtime.getRuntime().addShutdownHook(new Thread("stream"){            @Override            public void run() {                streams.close();                latch.countDown();            }        });        try {            streams.start();            latch.await();        } catch (InterruptedException e) {            e.printStackTrace();        }        System.exit(0);    }}

二、Kafka Shell 命令

1、创立Topic

`kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic mystreamin --partitions 1 --replication-factor 1kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic mystreamout --partitions 1 --replication-factor 1` *   1*   2


查看Topic

kafka-topics.sh --zookeeper 192.168.247.201:2181 --list

2、运行Java代码,执行以下步骤:
生产音讯

kafka-console-producer.sh --topic mystreamin --broker-list 127.0.0.1:9092

生产音讯

kafka-console-consumer.sh --topic mystreamout --bootstrap-server 127.0.0.1:9092 --from-beginning

案例二:WordCount Stream API

一、Kafka Java代码

代码局部

public class WordCountStream {    public static void main(String[] args) {        Properties prop = new Properties();        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"wordcount");        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.247.201:9092");        prop.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG,3000);        prop.put(ConsumerConfig.AUTO_OFFSET_RESET_DOC,"earliest");  // earliest  latest        prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false"); // 设置手动提交形式        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,Serdes.String().getClass());        // 创立流结构器        // wordcount-input        // hello world        // hello java        StreamsBuilder builder = new StreamsBuilder();        KTable<String, Long> count = builder.stream("wordcount-input")  // 从kafka中一条一条的取数据                .flatMapValues(           // 返回压扁后的数据                        (value) -> {       // 对数据进行按空格切割,返回List汇合                            String[] split = value.toString().split(" ");                            List<String> strings = Arrays.asList(split);                            return strings;                        })  // key:null value:hello ,key:null value:world ,key:null value:hello ,key:null value:java                .map((k, v) -> {                    return new KeyValue<String, String>(v,"1");                }).groupByKey().count();        count.toStream().foreach((k,v) -> {            System.out.println("key:"+k+"   value:"+v);        });        count.toStream().map((x,y) -> {            return new KeyValue<String,String>(x,y.toString());        }).to("wordcount-out");        final Topology topo = builder.build();        final KafkaStreams streams = new KafkaStreams(topo, prop);        final CountDownLatch latch = new CountDownLatch(1);        Runtime.getRuntime().addShutdownHook(new Thread("stream"){            @Override            public void run() {                streams.close();                latch.countDown();            }        });        try {            streams.start();            latch.await();        } catch (InterruptedException e) {            e.printStackTrace();        }        System.exit(0);    }}

二、Kafka Shell 命令

1、创立Topic

kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic wordcount-input --partitions 1 --replication-factor 1kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic wordcount-out --partitions 1 --replication-factor 1


**2、运行Java代码,执行以下步骤:
生产音讯**

kafka-console-producer.sh --topic wordcount-input --broker-list 127.0.0.1:9092

生产音讯

kafka-console-consumer.sh --topic wordcount-out --bootstrap-server 127.0.0.1:9092 --from-beginning

显示key生产音讯

kafka-console-consumer.sh --topic wordcount-out --bootstrap-server 127.0.0.1:9092 --property print.key=true --from-beginning

案例三:利用Kafka流实现对输出数字的求和

一、Kafka Java代码

public class SumStream {    public static void main(String[] args) {        Properties prop = new Properties();        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"sumstream");        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.247.201:9092");        prop.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG,3000);        prop.put(ConsumerConfig.AUTO_OFFSET_RESET_DOC,"earliest");  // earliest  latest        prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false"); // 设置手动提交形式        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,Serdes.String().getClass());        StreamsBuilder builder = new StreamsBuilder();        KStream<Object, Object> source = builder.stream("suminput");        source.map((key,value) ->                new KeyValue<String,String>("sum: ",value.toString())        ).groupByKey().reduce((x,y) ->{            System.out.println("x: "+x+"    y: "+y);            Integer sum = Integer.valueOf(x)+Integer.valueOf(y);            System.out.println("sum: "+sum);            return sum.toString();        });        final Topology topo = builder.build();        final KafkaStreams streams = new KafkaStreams(topo, prop);        final CountDownLatch latch = new CountDownLatch(1);        Runtime.getRuntime().addShutdownHook(new Thread("stream"){            @Override            public void run() {                streams.close();                latch.countDown();            }        });        try {            streams.start();            latch.await();        } catch (InterruptedException e) {            e.printStackTrace();        }        System.exit(0);    }}

二、Kafka Shell 命令

1、创立Topic

kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic suminput --partitions 1 --replication-factor 1

**2、运行Java代码,执行以下步骤:
生产音讯**

kafka-console-producer.sh --topic suminput --broker-list 127.0.0.1:9092

案例四:Kafka Stream实现不同窗口的流解决

一、Kafka Java代码

package cn.kgc.kb09;import org.apache.kafka.clients.consumer.ConsumerConfig;import org.apache.kafka.common.protocol.types.Field;import org.apache.kafka.common.serialization.Serdes;import org.apache.kafka.streams.*;import org.apache.kafka.streams.kstream.KStream;import org.apache.kafka.streams.kstream.SessionWindows;import org.apache.kafka.streams.kstream.TimeWindows;import java.time.Duration;import java.util.Arrays;import java.util.Properties;import java.util.concurrent.CountDownLatch;/** * @Qianchun * @Date 2020/12/16 * @Description */public class WindowStream {    public static void main(String[] args) {        Properties prop = new Properties();        // 不同的窗口流不能应用雷同的利用ID        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"SessionWindow");        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.247.201:9092");        prop.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG,3000);        prop.put(ConsumerConfig.AUTO_OFFSET_RESET_DOC,"earliest");  // earliest  latest        prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false"); // 设置手动提交形式        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,Serdes.String().getClass());        StreamsBuilder builder = new StreamsBuilder();        KStream<Object, Object> source = builder.stream("windowdemo");        source.flatMapValues(value -> Arrays.asList(value.toString().split("s+")))                .map((x,y) -> {                    return new KeyValue<String, String>(y,"1");                }).groupByKey()                //以下所有窗口的工夫均可通过下方参数调设                // Tumbling Time Window(窗口为5秒,5秒内无效)//                .windowedBy(TimeWindows.of(Duration.ofSeconds(5).toMillis()))                // Hopping Time Window(窗口为5秒,每次挪动2秒,所以若5秒内只输出一次会呈现5/2+1=3次)//                .windowedBy(TimeWindows.of(Duration.ofSeconds(5).toMillis())//                        .advanceBy(Duration.ofSeconds(2).toMillis()))                // Session Time Window(20秒内只有输出Session就无效,间隔下一次输出超过20秒Session生效,所有从从新从0开始)//                .windowedBy(SessionWindows.with(Duration.ofSeconds(20).toMillis()))                .count().toStream().foreach((x,y) -> {            System.out.println("x: "+x+" y:"+y);        });        final Topology topo = builder.build();        final KafkaStreams streams = new KafkaStreams(topo, prop);        final CountDownLatch latch = new CountDownLatch(1);        Runtime.getRuntime().addShutdownHook(new Thread("stream"){            @Override            public void run() {                streams.close();                latch.countDown();            }        });        try {            streams.start();            latch.await();        } catch (InterruptedException e) {            e.printStackTrace();        }        System.exit(0);    }}

二、Kafka Shell 命令

1、创立Topic

kafka-topics.sh --create --zookeeper 192.168.247.201:2181 --topic windowdemo --partitions 1 --replication-factor 1

**2、运行Java代码,执行以下步骤:
生产音讯**

kafka-console-producer.sh --topic windowdemo --broker-list 127.0.0.1:9092

留神:

  • ERROR:

    • Exception in thread “sum-a3bbe4d0-4cc9-4812-a7a0-e650a8a60c9f-StreamThread-1” java.lang.IllegalArgumentException: Window endMs time cannot be smaller than window startMs time.
    • 数组越界
  • 解决方案:

    • 大概率是窗口ID统一,请批改prop.put(StreamsConfig.APPLICATION_ID_CONFIG, "sessionwindow");的参数。