一、引言

java8最大的个性就是引入Lambda表达式,即函数式编程,能够将行为进行传递。总结就是:应用不可变值与函数,函数对不可变值进行解决,映射成另一个值。

二、java重要的函数式接口

1、什么是函数式接口

函数接口是只有一个形象办法的接口,用作 Lambda 表达式的类型。应用@FunctionalInterface注解润饰的类,编译器会检测该类是否只有一个形象办法或接口,否则,会报错。能够有多个默认办法,静态方法。

1.1 java8自带的罕用函数式接口。

函数接口形象办法性能参数返回类型示例
Predicatetest(T t)判断虚实Tboolean9龙的身高大于185cm吗?
Consumeraccept(T t)生产音讯Tvoid输入一个值
FunctionR apply(T t)将T映射为R(转换性能)TR取得student对象的名字
SupplierT get()生产音讯NoneT工厂办法
UnaryOperatorT apply(T t)一元操作TT逻辑非(!)
BinaryOperatorapply(T t, U u)二元操作(T,T)(T)求两个数的乘积(*)
public class Test {        @ToString    static class OutstandingClass {        private String name;        private Student student;        public String getName() {            return name;        }        public Student getStudent() {            return student;        }                public OutstandingClass(String name, Student student) {            this.name = name;            this.student = student;        }        public OutstandingClass() {        }    }        @ToString    static class Student{         private String name;         private int age;         private int stature;         private List<SpecialityEnum> specialitys;         public Student(String name,int age,int height){             this.name=name;             this.age=age;             this.stature=height;         }         public int getStature() {             return stature;         }         public int getAge() {             return age;         }         public String getName() {             return name;         }         public List<SpecialityEnum> getSpecialitys() {            return specialitys;        }    }        @ToString    static enum SpecialityEnum {         SIGN("sing"),         DANCE("dance"),         SWIMMING("swimming"),         RUNNING("running");         private String speciality;         public String getSpeciality() {                return speciality;         }    // 构造方法,留神:构造方法不能为public,因为enum并不能够被实例化        private SpecialityEnum(String speciality) {            this.speciality = speciality;        }    }        public static void main(String[] args) {        Predicate<Integer> predicate = x -> x > 185;        Student student = new Student("9龙", 23, 175);        System.out.println(            "9龙的身高高于185吗?:" +           predicate.test(student.getStature()));        Consumer<String> consumer = System.out::println;        consumer.accept("命运由我不禁天");        Function<Student, String> function = Student::getName;        String name = function.apply(student);        System.out.println(name);        Supplier<Integer> supplier =             () -> Integer.valueOf(BigDecimal.TEN.toString());        System.out.println(supplier.get());        UnaryOperator<Boolean> unaryOperator = uglily -> !uglily;        Boolean apply2 = unaryOperator.apply(true);        System.out.println(apply2);        BinaryOperator<Integer> operator = (x, y) -> x * y;        Integer integer = operator.apply(2, 3);        System.out.println(integer);        test(() -> "我是一个演示的函数式接口");    }    /**     * 演示自定义函数式接口应用     *     * @param worker     */    public static void test(Worker worker) {        String work = worker.work();        System.out.println(work);    }    public interface Worker {        String work();    }}//9龙的身高高于185吗?:false//命运由我不禁天//9龙//10//false//6//我是一个演示的函数式接口

以上演示了lambda接口的应用及自定义一个函数式接口并应用。上面,咱们看看java8将函数式接口封装到流中如何高效的帮忙咱们解决汇合。

留神:Student::getName例子中这种编写lambda表达式的形式称为办法援用。格局为ClassNmae::methodName。是不是很神奇,java8就是这么迷人。

1.2 惰性求值与及早求值

惰性求值:只形容Stream,操作的后果也是Stream,这样的操作称为惰性求值。惰性求值能够像建造者模式一样链式应用,最初再应用及早求值得到最终后果。

及早求值:失去最终的后果而不是Stream,这样的操作称为及早求值。

2、罕用的流

2.1 collect(Collectors.toList())

将流转换为list。还有toSet(),toMap()等。及早求值

List<Student> studentList = Stream.of(    new Student("路飞", 22, 175),    new Student("红发", 40, 180),    new Student("白胡子", 50, 185)).collect(Collectors.toList());System.out.println(studentList);//输入后果//[Student{name='路飞', age=22, stature=175, specialities=null}, //Student{name='红发', age=40, stature=180, specialities=null}, //Student{name='白胡子', age=50, stature=185, specialities=null}]

2.2 filter

顾名思义,起过滤筛选的作用。外部就是Predicate接口。惰性求值。

比方咱们筛选出出身高小于180的同学。

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));        List<Student> list = students.stream()            .filter(stu -> stu.getStature() < 180)            .collect(Collectors.toList());        System.out.println(list);        //输入后果//[Student{name='路飞', age=22, stature=175, specialities=null}]

2.3 map

转换性能,外部就是Function接口。惰性求值

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));        List<String> names = students.stream().map(student -> student.getName())                .collect(Collectors.toList());        System.out.println(names);        //输入后果//[路飞, 红发, 白胡子]

例子中将student对象转换为String对象,获取student的名字。

2.4 flatMap

将多个Stream合并为一个Stream。惰性求值

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));        List<Student> studentList = Stream.of(students,                asList(new Student("艾斯", 25, 183),                        new Student("雷利", 48, 176)))                .flatMap(students1 -> students1.stream()).collect(Collectors.toList());        System.out.println(studentList);        //输入后果//[Student{name='路飞', age=22, stature=175, specialities=null}, //Student{name='红发', age=40, stature=180, specialities=null}, //Student{name='白胡子', age=50, stature=185, specialities=null}, //Student{name='艾斯', age=25, stature=183, specialities=null},//Student{name='雷利', age=48, stature=176, specialities=null}]

调用Stream.of的静态方法将两个list转换为Stream,再通过flatMap将两个流合并为一个。

2.5 max和min

咱们常常会在汇合中求最大或最小值,应用流就很不便。及早求值。

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));        Optional<Student> max = students.stream()            .max(Comparator.comparing(stu -> stu.getAge()));        Optional<Student> min = students.stream()            .min(Comparator.comparing(stu -> stu.getAge()));        //判断是否有值        if (max.isPresent()) {            System.out.println(max.get());        }        if (min.isPresent()) {            System.out.println(min.get());        }        //输入后果//Student{name='白胡子', age=50, stature=185, specialities=null}//Student{name='路飞', age=22, stature=175, specialities=null}

max、min接管一个Comparator(例子中应用java8自带的动态函数,只须要传进须要比拟值即可。)并且返回一个Optional对象,该对象是java8新增的类,专门为了避免null引发的空指针异样。能够应用max.isPresent()判断是否有值;能够应用max.orElse(new Student()),当值为null时就应用给定值;也能够应用max.orElseGet(() -> new Student());这须要传入一个Supplier的lambda表达式。

2.6 count

统计性能,个别都是联合filter应用,因为先筛选出咱们须要的再统计即可。及早求值

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));        long count = students.stream().filter(s1 -> s1.getAge() < 45).count();        System.out.println("年龄小于45岁的人数是:" + count);        //输入后果//年龄小于45岁的人数是:2

2.7 reduce

reduce 操作能够实现从一组值中生成一个值。在上述例子中用到的 count 、 min 和 max 方 法,因为罕用而被纳入规范库中。事实上,这些办法都是 reduce 操作。及早求值。

Integer reduce = Stream.of(1, 2, 3, 4).reduce(0, (acc, x) -> acc+ x);        System.out.println(reduce);//输入后果//10

咱们看得reduce接管了一个初始值为0的累加器,顺次取出值与累加器相加,最初累加器的值就是最终的后果。

三、高级汇合类及收集器

收集器,一种通用的、从流生成简单值的构造。只有将它传给 collect 办法,所有的流就都能够应用它了。规范类库曾经提供了一些有用的收集器,以下示例代码中的收集器都是从 java.util.stream.Collectors 类中动态导入的。

List<Student> students1 = new ArrayList<>(3);students1.add(new Student("路飞", 23, 175));students1.add(new Student("红发", 40, 180));students1.add(new Student("白胡子", 50, 185));OutstandingClass ostClass1 = new OutstandingClass("一班", students1);//复制students1,并移除一个学生List<Student> students2 = new ArrayList<>(students1);students2.remove(1);OutstandingClass ostClass2 = new OutstandingClass("二班", students2);//将ostClass1、ostClass2转换为StreamStream<OutstandingClass> classStream = Stream.of(ostClass1, ostClass2);OutstandingClass outstandingClass = biggestGroup(classStream);System.out.println("人数最多的班级是:" + outstandingClass.getName());System.out.println("一班平均年龄是:" + averageNumberOfStudent(students1));/** * 获取人数最多的班级 */public static OutstandingClass biggestGroup(Stream<OutstandingClass> outstandingClasses) {    return outstandingClasses.collect(            maxBy(comparing(ostClass -> ostClass.getStudents().size())))            .orElseGet(OutstandingClass::new);}/** * 计算平均年龄 */private static double averageNumberOfStudent(List<Student> students) {    return students.stream().collect(averagingInt(Student::getAge));}//输入后果//人数最多的班级是:一班//一班平均年龄是:37.666666666666664

maxBy或者minBy就是求最大值与最小值。

3.2 转换成块

罕用的流操作是将其分解成两个汇合,Collectors.partitioningBy帮咱们实现了,接管一个Predicate函数式接口。

将示例学生分为会唱歌与不会唱歌的两个汇合。

Map<Boolean, List<Student>> listMap = students.stream().collect(            Collectors.partitioningBy(student -> student.getSpecialities().                                      contains(SpecialityEnum.SING)));

3.3 数据分组

数据分组是一种更天然的宰割数据操作,与将数据分成 ture 和 false 两局部不同,能够使用任意值对数据分组。Collectors.groupingBy接管一个Function做转换。


如图,咱们应用groupingBy将依据进行分组为圆形一组,三角形一组,正方形一组。

例子:依据学生第一个专长进行分组

Map<SpecialityEnum, List<Student>> listMap =              students.stream().collect(             Collectors.groupingBy(student -> student.getSpecialities().get(0)));

Collectors.groupingBy与SQL 中的 group by 操作是一样的。

3.4 字符串拼接

如果将所有学生的名字拼接起来,怎么做呢?通常只能创立一个StringBuilder,循环拼接。应用Stream,应用Collectors.joining()简略容易。**

List<Student> students = new ArrayList<>(3);        students.add(new Student("路飞", 22, 175));        students.add(new Student("红发", 40, 180));        students.add(new Student("白胡子", 50, 185));         String names = students.stream()             .map(Student::getName).collect(Collectors.joining(",","[","]"));        System.out.println(names);        //输入后果//[路飞,红发,白胡子]

joining接管三个参数,第一个是分界符,第二个是前缀符,第三个是结束符。也能够不传入参数Collectors.joining(),这样就是间接拼接。

3.5 筛选+-

static class Student{    public String name;     public int age;     public int stature;     public boolean result;     public Student(String name,int age,int height,boolean result){            this.name=name;     this.age=age;     this.stature=height;     this.result=result; }    public void setResult(boolean result){        this.result= result; }    public int getStature() {        return stature; }    public int getAge() {        return age; }    public String getName() {        return name; }    public boolean getResult() {        return result; }}public static void main(String[] args) {    List<String> iv=new ArrayList(); iv.add("张三"); iv.add("李四"); iv.add("王五"); iv.add("赵六"); List<Student> troList =new ArrayList(); troList.add(new Student("bobo",20,170,false)); troList.add(new Student("张三",30,171,false)); troList.add(new Student("老李",40,172,false)); troList.add(new Student("赵六",50,173,false)); troList.add(new Student("隔壁老王",60,174,false)); //筛选+ List<String> stringList = iv.stream().filter(            tname -> troList.stream().map(Student::getName).collect(Collectors.toList()).contains(tname)    ).collect(Collectors.toList()); List<Student> students = troList.stream().map(            student -> {                if(iv.contains(student.getName())){                    student.setResult(true); return student; }                return student; }    ).collect(Collectors.toList()); students.forEach(            s -> {                System.out.println(s.getName() +":" + s.getResult()); }    ); System.out.println("================筛选+==============="); stringList.forEach(            s -> {                System.out.println(s); }    ); System.out.println("================筛选-==============="); //筛选- List<String> stringList2 = iv.stream().filter(            tname -> !troList.stream().map(Student::getName).collect(Collectors.toList()).contains(tname)    ).collect(Collectors.toList()); stringList2.forEach(            s -> {                System.out.println(s); }    );}

四、总结

本篇次要从理论应用讲述了罕用的办法及流,应用java8能够很清晰表白你要做什么,代码也很简洁。本篇例子次要是为了解说较为简单,大家能够去应用java8重构本人现有的代码,自行体会lambda的奥秘。本文说的Stream要组合应用才会施展更大的性能,链式调用很迷人,依据本人的业务去做吧。