开篇闲扯
后面几篇写了无关Java对象的内存布局、Java的内存模型、多线程锁的分类、Synchronized、Volatile、以及并发场景下呈现问题的三大罪魁祸首。看起来写了五篇文章,实际上也仅仅是写了个皮毛,用来应酬应酬局部公司“八股文”式的面试还行,然而在真正的在理论开发中会遇到各种稀奇古怪的问题。这时候就要通过线上的一些监测伎俩,获取零碎的运行日志进行剖析后再隔靴搔痒,比方JDK的jstack、jmap、命令行工具vmstat、JMeter等等,肯定要在正当的剖析根底上优化,否则可能就是零碎小“感冒”,后果做了个阑尾炎手术。
又扯远了,老样子,还是先说一下本文次要讲点啥,而后再一点点解释。本文次要讲并发包JUC中的三个类:ReentrantLock、ReentrantReadWriteLock和StampedLock以及AQS(AbstractQueuedSynchronizer)的一些基本概念。
先来个脑图:
Lock接口
public interface Lock { //加锁操作,加锁失败就进入阻塞状态并期待锁开释 void lock(); //与lock()办法始终,只是该办法容许阻塞的线程中断 void lockInterruptibly() throws InterruptedException; //非阻塞获取锁 boolean tryLock(); //带参数的非阻塞获取锁 boolean tryLock(long time, TimeUnit unit) throws InterruptedException; //对立的解锁办法 void unlock();}
下面的源码展现了作为顶层接口Lock定义的一些根底办法。
lock只是个显示的加锁接口,对应不同的实现类,能够供开发人员进行自定义扩大。比方一些定时的可轮询的获取锁模式,偏心锁与非偏心锁,读写锁,以及可重入锁等,都可能很轻松的实现。Lock的锁是基于Java代码实现的,加解锁都是通过lock()和unlock()办法实现的。从性能上来说,Synchronized的性能(吞吐量)以及稳定性是略差于Lock锁的。然而,在Doug Lee参加编写的《Java并发编程实际》一书中又特别强调了,如果不是对Lock锁中提供的高级个性有相对的依赖,倡议还是应用Synchronized来作为并发同步的工具。因为它更简洁易用,不会因为在应用Lock接口时遗记在Finally中解锁而出bug。说到底,还是为了升高编程门槛,让Java语言更加好用。
其实常见的几个实现类有:ReentrantLock、ReentrantReadWriteLock、StampedLock
接下来将具体解说一下。
ReentrantLock
先简略举个应用的例子:
/** * FileName: TestLock * Author: RollerRunning * Date: 2020/12/7 9:34 PM * Description: */public class TestLock { private static int count=0; private static Lock lock=new ReentrantLock(); public static void add(){ // 加锁 lock.lock(); try { count++; Thread.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }finally{ //在finally中解锁,加解锁必须成对呈现 lock.unlock(); } }}
ReentrantLock只反对独占式的获取偏心锁或者是非偏心锁(都是基于Sync外部类实现,而Sync又继承自AQS),在它的外部类Sync继承了AbstractQueuedSynchronizer,并同时实现了tryAcquire()、tryRelease()和isHeldExclusively()办法等。同时,在ReentrantLock中还有其余两个外部类,一个是实现了偏心锁一个实现了非偏心锁,上面是ReentrantLock的局部源码:
/** * 非偏心锁 */static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); }}/** * 偏心锁 */static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; //加锁时调用 final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { //获取以后线程 final Thread current = Thread.currentThread(); //获取父类 AQS 中的int型state int c = getState(); //判断锁是否被占用 if (c == 0) { //这个if判断中,先判断队列是否为空,如果为空则阐明锁能够失常获取,而后进行CAS操作并批改state标记位的信息 if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { //CAS操作胜利,设置AQS中变量exclusiveOwnerThread的值为以后线程,示意获取锁胜利 setExclusiveOwnerThread(current); //返回获取锁胜利 return true; } } //而当state的值不为0时,阐明锁曾经被拿走了,此时判断锁是不是本人拿走的,因为他是个可重入锁。 else if (current == getExclusiveOwnerThread()) { //如果是以后线程在占用锁,则再次获取锁,并批改state的值 int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } //当标记位不为0,且占用锁的线程也不是本人时,返回获取锁失败 return false; }}/** * AQS中排队的办法 */final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); }}
下面是以偏心锁为例对源码进行了简略的正文,能够依据这个思路,看一看非偏心锁的源码实现,再敞开源码试着画一下整个流程图,理解其外部实现的真谛。我先画为敬了:
这里涵盖了ReentrantLock的加锁根本流程,观众老爷是不是能够试着画一下解锁的流程,还有就是这个例子是独占式偏心锁,独占式非偏心锁的总体流程大差不差,这里就不赘述了。
ReentrantReadWriteLock
一个简略的应用示例,大家能够本人运行感受一下:
/** * FileName: ReentrantReadWriteLockTest * Author: RollerRunning * Date: 2020/12/8 6:48 PM * Description: ReentrantReadWriteLock的简略应用示例 */public class ReentrantReadWriteLockTest { private static ReentrantReadWriteLock READWRITELOCK = new ReentrantReadWriteLock(); //取得读锁 private static ReentrantReadWriteLock.ReadLock READLOCK = READWRITELOCK.readLock(); //取得写锁 private static ReentrantReadWriteLock.WriteLock WRITELOCK = READWRITELOCK.writeLock(); public static void main(String[] args) { ReentrantReadWriteLockTest lock = new ReentrantReadWriteLockTest(); //别离启动两个读线程和一个写线程 Thread readThread1 = new Thread(new Runnable() { @Override public void run() { lock.read(); } },"read1"); Thread readThread2 = new Thread(new Runnable() { @Override public void run() { lock.read(); } },"read2"); Thread writeThread = new Thread(new Runnable() { @Override public void run() { lock.write(); } },"write"); readThread1.start(); readThread2.start(); writeThread.start(); } public void read() { READLOCK.lock(); try { System.out.println("线程 " + Thread.currentThread().getName() + " 获取读锁。。。"); Thread.sleep(2000); System.out.println("线程 " + Thread.currentThread().getName() + " 开释读锁。。。"); } catch (Exception e) { e.printStackTrace(); } finally { READLOCK.unlock(); } } public void write() { WRITELOCK.lock(); try { System.out.println("线程 " + Thread.currentThread().getName() + " 获取写锁。。。"); Thread.sleep(2000); System.out.println("线程 " + Thread.currentThread().getName() + " 开释写锁。。。"); } catch (Exception e) { e.printStackTrace(); } finally { WRITELOCK.unlock(); } }}
后面说了ReentrantLock是一个独占锁,即不管线程对数据执行读还是写操作,同一时刻只容许一个线程持有锁。然而在一些读多写少的场景下,这种不分青红皂白就无脑加锁对的做法不够极客也很影响效率。因而,基于ReentrantLock优化而来的ReentrantReadWriteLock就呈现了。这种锁的思维是“读写锁拆散”,多个线程能够同时持有读锁,然而不容许多个线程持有雷同写锁或者同时持有读写锁。要害源码解读:
//加共享锁protected final int tryAcquireShared(int unused) { //获取以后加锁的线程 Thread current = Thread.currentThread(); //获取锁状态信息 int c = getState(); //判断以后锁是否可用,并判断以后线程是否独占资源 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; //获取读锁的数量 int r = sharedCount(c); //这里做了三个判断:是否阻塞即是否为偏心锁、持有该共享锁的线程是否超过最大值、CAS加共享读锁是否胜利 if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { //以后线程为第一个加读锁的,并设置持有锁线程数量 if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { //以后示意为重入锁 firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) //获取以后线程的计数器 cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) //增加到readHolds中,这里是基于ThreadLocal实现的,每个线程都有本人的readHolds用于记录本人重入的次数 readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current);}final int fullTryAcquireShared(Thread current) { HoldCounter rh = null; for (;;) { int c = getState(); if (exclusiveCount(c) != 0) { if (getExclusiveOwnerThread() != current) return -1; // else we hold the exclusive lock; blocking here // would cause deadlock. } else if (readerShouldBlock()) { // Make sure we're not acquiring read lock reentrantly if (firstReader == current) { // assert firstReaderHoldCount > 0; } else { if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) { rh = readHolds.get(); if (rh.count == 0) readHolds.remove(); } } if (rh.count == 0) return -1; } } if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { if (sharedCount(c) == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } }}
在ReentrantReadWriteLock中,也是基于AQS来实现的,在它的外部应用了一个int型(4字节32位)的stat来示意读写锁,其中高16位示意读锁,低16位示意写锁,而对于读写锁的判断通常是对int值以及高下16位进行判断。接下来用一张图展现一下获取共享的读锁过程:
至此,别离展现了获取ReentrantLock独占锁和ReentrantReadWriteLock共享读锁的过程,心愿可能帮忙大家跟面试官PK。
总结一下后面说的两种锁:
当线程持有读锁时,那么就不能再获取写锁。当A线程在获取写锁的时候,如果以后读锁被占用,立刻返回失败失败。
当线程持有写锁时,该线程是能够持续获取读锁的。当A线程获取读锁时如果发现写锁被占用,判断以后写锁持有者是不是本人,如果是本人就能够持续获取读锁,否则返回失败。
StampedLock
StampedLock其实是对ReentrantReadWriteLock进行了进一步的降级,试想一下,当有很多读线程,然而只有一个写线程,最蹩脚的状况是写线程始终竞争不到锁,写线程就会始终处于期待状态,也就是线程饥饿问题。StampedLock的外部实现也是基于队列和state状态实现的,然而它引入了stamp(标记)的概念,因而在获取锁时会返回一个惟一标识stamp作为以后锁的版本,而在开释锁时,须要传递这个stamp作为标识来解锁。
从概念上来说StampedLock比RRW多引入了一种乐观锁的思维,从应用层面来说,加锁生成stamp,解锁须要传同样的stamp作为参数。
最初贴一张我整顿的这部分脑图:
最初,感激各位观众老爷,还请三连!!!
点赞关注不迷路,再次感激!