为便于查看散布在多个机器上的利用日志,常须要聚合日志. 以下是集体的实现总结

市面上的做法

  1. elk (es, loglash, konlia): loglash 做日志聚合(以appender)的模式, es 做存储, konlia 做可视化.

简略实现

思路: 音讯放mq,生产端有序生产,记录日志
  • 详细描述:
  1. web入口能够通过servlet filter 生成整个调用链的惟一 TraceId (能够由 申请url,业务端标识独特形成)
  2. 通过dubbo 的filter, 实现 调用开始的时候将traceId传入到threadLocal. 生产端调用服务端时,将traceId. 作为额定属性传参,服务端filter 接管到参数时放入到ThreadLocal 中从而达到标记同一个申请的目标.
  3. 自定义 logback的 Appender, 拿到ThreadLocal中的 TraceId,如果是雷同的则放入RocketMq 的同一个队列,达到程序生产的目标.继而保障记录日志是有序的.
  4. 生产日志时,依照队列循环打印,因为每个队列外面的对应的是整个的一个调用链的日志, 所以依照队列打印是时序失常的. 更有利于查看日志
  • 留神点:
  1. 对于音讯生产者而言, 记录日志时,尽管是程序发送的, 但不能保障先收回的就先达到队列. 兼顾性能, 又不能采纳rocketmq 的同步发送音讯模式.采纳sendOneWay的形式效率快,但不保障达到队列里是有序的.
  2. 不能用 logback 的 AsyncAppender 包装本人实现的 appender, 因为全局 traceId保留在threadLocal 中,AsyncAppender 打印日志会在新启一个线程打印日志, 之前的ThreadLocal 中的TraceId 就获取不到了.
  • 示例代码
次要类放github上了https://github.com/normalHeFei/normal_try/tree/master/java/src/main/java/wk/cluloglogback.xml <?xml version="1.0" encoding="UTF-8"?><configuration>    <appender name="mqAppender1" class="wk.clulog.RocketMqAppender">        <param name="Tag" value="logTag" />        <param name="Topic" value="logTopic" />        <param name="ProducerGroup" value="logGroup" />        <param name="NameServerAddress" value="192.168.103.3:9876"/>        <layout class="ch.qos.logback.classic.PatternLayout">            <pattern>%date %p %t - %m%n</pattern>        </layout>    </appender>    <appender name="mqAsyncAppender1" class="ch.qos.logback.classic.AsyncAppender">        <queueSize>1024</queueSize>        <discardingThreshold>80</discardingThreshold>        <maxFlushTime>2000</maxFlushTime>        <neverBlock>true</neverBlock>        <appender-ref ref="mqAppender1"/>    </appender>    <root level="INFO">        <appender-ref ref="mqAppender1"/>    </root></configuration>

rocketmq 相干实现代码走读

  • producer几种发送形式实现
  1. sendOneWay / sendAsync:

依据负载平衡策略选取broker,获取channel 间接发送,尽管是sendOneWay但对并发发送的数量,rocketMq其实用信号量爱护了一下最大的并发数,相干代码如下

public void invokeOnewayImpl(final Channel channel, final RemotingCommand request, final long timeoutMillis)        throws InterruptedException, RemotingTooMuchRequestException, RemotingTimeoutException, RemotingSendRequestException {        request.markOnewayRPC();        boolean acquired = this.semaphoreOneway.tryAcquire(timeoutMillis, TimeUnit.MILLISECONDS);        if (acquired) {            //将信号量 的 release 用 cas 包装了一下,防止多线程环境下多个release反复操作            final SemaphoreReleaseOnlyOnce once = new SemaphoreReleaseOnlyOnce(this.semaphoreOneway);            try {                channel.writeAndFlush(request).addListener(new ChannelFutureListener() {                    @Override                    public void operationComplete(ChannelFuture f) throws Exception {                        once.release();                        if (!f.isSuccess()) {                            log.warn("send a request command to channel <" + channel.remoteAddress() + "> failed.");                        }                    }                });            } catch (Exception e) {                once.release();                log.warn("write send a request command to channel <" + channel.remoteAddress() + "> failed.");                throw new RemotingSendRequestException(RemotingHelper.parseChannelRemoteAddr(channel), e);            }        } else {            if (timeoutMillis <= 0) {                throw new RemotingTooMuchRequestException("invokeOnewayImpl invoke too fast");            } else {                String info = String.format(                    "invokeOnewayImpl tryAcquire semaphore timeout, %dms, waiting thread nums: %d semaphoreAsyncValue: %d",                    timeoutMillis,                    this.semaphoreOneway.getQueueLength(),                    this.semaphoreOneway.availablePermits()                );                log.warn(info);                throw new RemotingTimeoutException(info);            }        }    }
  1. sendMessageSync

通过countDownLatch实现同步返回. 代码如下:

 channel.writeAndFlush(request).addListener(new ChannelFutureListener() {        @Override        public void operationComplete(ChannelFuture f) throws Exception {            //将后果包装成Future            if (f.isSuccess()) {                responseFuture.setSendRequestOK(true);                return;            } else {                responseFuture.setSendRequestOK(false);            }            responseTable.remove(opaque);            responseFuture.setCause(f.cause());            responseFuture.putResponse(null);            log.warn("send a request command to channel <" + addr + "> failed.");        }});RemotingCommand responseCommand = responseFuture.waitResponse(timeoutMillis);//栅栏期待.public RemotingCommand waitResponse(final long timeoutMillis) throws InterruptedException {        this.countDownLatch.await(timeoutMillis, TimeUnit.MILLISECONDS);        return this.responseCommand;    }//回调返回后果时,解除栅栏public void putResponse(final RemotingCommand responseCommand) {    this.responseCommand = responseCommand;    this.countDownLatch.countDown();}
  • consumer 是如何有序生产的

间接看代码

  try {        //processQueue 为队列音讯的解决快照,记录了解决音讯的偏移量等信息, 通过对解决队列加锁来实现 单个队列外面音讯的程序生产.         this.processQueue.getLockConsume().lock();        if (this.processQueue.isDropped()) {            log.warn("consumeMessage, the message queue not be able to consume, because it's dropped. {}",                this.messageQueue);            break;        }        status = messageListener.consumeMessage(Collections.unmodifiableList(msgs), context);    } catch (Throwable e) {        log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",            RemotingHelper.exceptionSimpleDesc(e),            ConsumeMessageOrderlyService.this.consumerGroup,            msgs,            messageQueue);        hasException = true;    } finally {        this.processQueue.getLockConsume().unlock();    }