装置hadoop筹备
Hadoop下载地址:
https://archive.apache.org/dist/hadoop/common/hadoop-2.7.2/
装置
解压安装文件到/opt/server上面
tar -zxvf hadoop-2.7.2.tar.gz -C /opt/server/
查看是否解压胜利
将Hadoop增加到环境变量
关上/etc/profile文件
vi /etc/profile
在profile文件开端增加JDK门路:(shitf+g)
HADOOP\_HOME
export HADOOP\_HOME=/opt/server/hadoop-2.7.2
export PATH=$PATH:$HADOOP\_HOME/bin
export PATH=$PATH:$HADOOP\_HOME/sbin
让批改后的文件失效
source /etc/profile
测试是否装置胜利
hadoop version
Hadoop 2.7.2
...
配置文件
批改core-site.xml
<configuration><!-- 指定NameNode的HA高可用的zk地址 --> <property> <name>ha.zookeeper.quorum</name> <value>node01:2181,node02:2181,node03:2181</value> </property> <!-- 指定HDFS拜访的域名地址 --> <property> <name>fs.defaultFS</name> <value>hdfs://ns</value> </property> <!-- 临时文件存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/export/servers/hadoop-2.7.5/data/tmp</value> </property> <!-- 开启hdfs垃圾箱机制,指定垃圾箱中的文件七天之后就彻底删掉 单位为分钟 --> <property> <name>fs.trash.interval</name> <value>10080</value> </property></configuration>
批改hdfs-site.xml
<configuration><!-- 指定命名空间 --> <property> <name>dfs.nameservices</name> <value>ns</value> </property><!-- 指定该命名空间下的两个机器作为咱们的NameNode --> <property> <name>dfs.ha.namenodes.ns</name> <value>nn1,nn2</value> </property> <!-- 配置第一台服务器的namenode通信地址 --> <property> <name>dfs.namenode.rpc-address.ns.nn1</name> <value>node01:8020</value> </property> <!-- 配置第二台服务器的namenode通信地址 --> <property> <name>dfs.namenode.rpc-address.ns.nn2</name> <value>node02:8020</value> </property> <!-- 所有从节点之间互相通信端口地址 --> <property> <name>dfs.namenode.servicerpc-address.ns.nn1</name> <value>node01:8022</value> </property> <!-- 所有从节点之间互相通信端口地址 --> <property> <name>dfs.namenode.servicerpc-address.ns.nn2</name> <value>node02:8022</value> </property> <!-- 第一台服务器namenode的web拜访地址 --> <property> <name>dfs.namenode.http-address.ns.nn1</name> <value>node01:50070</value> </property> <!-- 第二台服务器namenode的web拜访地址 --> <property> <name>dfs.namenode.http-address.ns.nn2</name> <value>node02:50070</value> </property> <!-- journalNode的拜访地址,留神这个地址肯定要配置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://node01:8485;node02:8485;node03:8485/ns1</value> </property> <!-- 指定故障主动复原应用的哪个java类 --> <property> <name>dfs.client.failover.proxy.provider.ns</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 故障转移应用的哪种通信机制 --> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <!-- 指定通信应用的公钥 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/root/.ssh/id_rsa</value> </property> <!-- journalNode数据寄存地址 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/export/servers/hadoop-2.7.5/data/dfs/jn</value> </property> <!-- 启用主动故障复原性能 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- namenode产生的文件寄存门路 --> <property> <name>dfs.namenode.name.dir</name> <value>file:///export/servers/hadoop-2.7.5/data/dfs/nn/name</value> </property> <!-- edits产生的文件寄存门路 --> <property> <name>dfs.namenode.edits.dir</name> <value>file:///export/servers/hadoop-2.7.5/data/dfs/nn/edits</value> </property> <!-- dataNode文件寄存门路 --> <property> <name>dfs.datanode.data.dir</name> <value>file:///export/servers/hadoop-2.7.5/data/dfs/dn</value> </property> <!-- 敞开hdfs的文件权限 --> <property> <name>dfs.permissions</name> <value>false</value> </property> <!-- 指定block文件块的大小 --> <property> <name>dfs.blocksize</name> <value>134217728</value> </property></configuration>
批改yarn-site.xml
<configuration><!-- Site specific YARN configuration properties --><!-- 是否启用日志聚合.应用程序实现后,日志汇总收集每个容器的日志,这些日志挪动到文件系统,例如HDFS. --><!-- 用户能够通过配置"yarn.nodemanager.remote-app-log-dir"、"yarn.nodemanager.remote-app-log-dir-suffix"来确定日志挪动到的地位 --><!-- 用户能够通过应用程序工夫服务器拜访日志 --><!-- 启用日志聚合性能,应用程序实现后,收集各个节点的日志到一起便于查看 --> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <!--开启resource manager HA,默认为false--> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value></property><!-- 集群的Id,应用该值确保RM不会做为其它集群的active --><property> <name>yarn.resourcemanager.cluster-id</name> <value>mycluster</value></property><!--配置resource manager 命名--><property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value></property><!-- 配置第一台机器的resourceManager --><property> <name>yarn.resourcemanager.hostname.rm1</name> <value>node03</value></property><!-- 配置第二台机器的resourceManager --><property> <name>yarn.resourcemanager.hostname.rm2</name> <value>node02</value></property><!-- 配置第一台机器的resourceManager通信地址 --><property> <name>yarn.resourcemanager.address.rm1</name> <value>node03:8032</value></property><property> <name>yarn.resourcemanager.scheduler.address.rm1</name> <value>node03:8030</value></property><property> <name>yarn.resourcemanager.resource-tracker.address.rm1</name> <value>node03:8031</value></property><property> <name>yarn.resourcemanager.admin.address.rm1</name> <value>node03:8033</value></property><property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>node03:8088</value></property><!-- 配置第二台机器的resourceManager通信地址 --><property> <name>yarn.resourcemanager.address.rm2</name> <value>node02:8032</value></property><property> <name>yarn.resourcemanager.scheduler.address.rm2</name> <value>node02:8030</value></property><property> <name>yarn.resourcemanager.resource-tracker.address.rm2</name> <value>node02:8031</value></property><property> <name>yarn.resourcemanager.admin.address.rm2</name> <value>node02:8033</value></property><property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>node02:8088</value></property><!--开启resourcemanager主动复原性能--><property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value></property><!--在node1上配置rm1,在node2上配置rm2,留神:个别都喜爱把配置好的文件近程复制到其它机器上,但这个在YARN的另一个机器上肯定要批改,其余机器上不配置此项--> <property> <name>yarn.resourcemanager.ha.id</name> <value>rm1</value> <description>If we want to launch more than one RM in single node, we need this configuration</description> </property> <!--用于长久存储的类。尝试开启--><property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value></property><property> <name>yarn.resourcemanager.zk-address</name> <value>node02:2181,node03:2181,node01:2181</value> <description>For multiple zk services, separate them with comma</description></property><!--开启resourcemanager故障主动切换,指定机器--> <property> <name>yarn.resourcemanager.ha.automatic-failover.enabled</name> <value>true</value> <description>Enable automatic failover; By default, it is enabled only when HA is enabled.</description></property><property> <name>yarn.client.failover-proxy-provider</name> <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value></property><!-- 容许调配给一个工作最大的CPU核数,默认是8 --><property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>4</value></property><!-- 每个节点可用内存,单位MB --><property> <name>yarn.nodemanager.resource.memory-mb</name> <value>512</value></property><!-- 单个工作可申请起码内存,默认1024MB --><property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>512</value></property><!-- 单个工作可申请最大内存,默认8192MB --><property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>512</value></property><!--多长时间聚合删除一次日志 此处--><property> <name>yarn.log-aggregation.retain-seconds</name> <value>2592000</value><!--30 day--></property><!--工夫在几秒钟内保留用户日志。只实用于如果日志聚合是禁用的--><property> <name>yarn.nodemanager.log.retain-seconds</name> <value>604800</value><!--7 day--></property><!--指定文件压缩类型用于压缩汇总日志--><property> <name>yarn.nodemanager.log-aggregation.compression-type</name> <value>gz</value></property><!-- nodemanager本地文件存储目录--><property> <name>yarn.nodemanager.local-dirs</name> <value>/export/servers/hadoop-2.7.5/yarn/local</value></property><!-- resourceManager 保留最大的工作实现个数 --><property> <name>yarn.resourcemanager.max-completed-applications</name> <value>1000</value></property><!-- 逗号隔开的服务列表,列表名称应该只蕴含a-zA-Z0-9_,不能以数字开始--><property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value></property><!--rm失联后从新链接的工夫--> <property> <name>yarn.resourcemanager.connect.retry-interval.ms</name> <value>2000</value></property></configuration>
批改mapred-site.xml
<configuration><!--指定运行mapreduce的环境是yarn --><property> <name>mapreduce.framework.name</name> <value>yarn</value></property><!-- MapReduce JobHistory Server IPC host:port --><property> <name>mapreduce.jobhistory.address</name> <value>node03:10020</value></property><!-- MapReduce JobHistory Server Web UI host:port --><property> <name>mapreduce.jobhistory.webapp.address</name> <value>node03:19888</value></property><!-- The directory where MapReduce stores control files.默认 ${hadoop.tmp.dir}/mapred/system --><property> <name>mapreduce.jobtracker.system.dir</name> <value>/export/servers/hadoop-2.7.5/data/system/jobtracker</value></property><!-- The amount of memory to request from the scheduler for each map task. 默认 1024--><property> <name>mapreduce.map.memory.mb</name> <value>1024</value></property><!-- <property> <name>mapreduce.map.java.opts</name> <value>-Xmx1024m</value> </property> --><!-- The amount of memory to request from the scheduler for each reduce task. 默认 1024--><property> <name>mapreduce.reduce.memory.mb</name> <value>1024</value></property><!-- <property> <name>mapreduce.reduce.java.opts</name> <value>-Xmx2048m</value> </property> --><!-- 用于存储文件的缓存内存的总数量,以兆字节为单位。默认状况下,调配给每个合并流1MB,给个合并流应该寻求最小化。默认值100--><property> <name>mapreduce.task.io.sort.mb</name> <value>100</value></property> <!-- <property> <name>mapreduce.jobtracker.handler.count</name> <value>25</value> </property>--><!-- 整顿文件时用于合并的流的数量。这决定了关上的文件句柄的数量。默认值10--><property> <name>mapreduce.task.io.sort.factor</name> <value>10</value></property><!-- 默认的并行传输量由reduce在copy(shuffle)阶段。默认值5--><property> <name>mapreduce.reduce.shuffle.parallelcopies</name> <value>25</value></property><property> <name>yarn.app.mapreduce.am.command-opts</name> <value>-Xmx1024m</value></property><!-- MR AppMaster所需的内存总量。默认值1536--><property> <name>yarn.app.mapreduce.am.resource.mb</name> <value>1536</value></property><!-- MapReduce存储两头数据文件的本地目录。目录不存在则被疏忽。默认值${hadoop.tmp.dir}/mapred/local--><property> <name>mapreduce.cluster.local.dir</name> <value>/export/servers/hadoop-2.7.5/data/system/local</value></property></configuration>
批改slaves
node01node02node03
批改hadoop-env.sh
export JAVA_HOME=/export/servers/jdk1.8.0_141
集群启动过程
将第一台机器的安装包发送到其余机器上
第一台机器执行以下命令
cd /export/serversscp -r hadoop-2.7.5/ node02:$PWDscp -r hadoop-2.7.5/ node03:$PWD
三台机器上独特创立目录
三台机器执行以下命令
mkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/namemkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/editsmkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/namemkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/edits
更改node02的rm2
第二台机器执行以下命令
cd /export/servers/hadoop-2.7.5/etc/hadoopvim yarn-site.xml
<!--在node3上配置rm1,在node2上配置rm2,留神:个别都喜爱把配置好的文件近程复制到其它机器上,但这个在YARN的另一个机器上肯定要批改,其余机器上不配置此项 留神咱们当初有两个resourceManager 第三台是rm1 第二台是rm2这个配置肯定要记得去node02下面改好--> <property> <name>yarn.resourcemanager.ha.id</name> <value>rm2</value> <description>If we want to launch more than one RM in single node, we need this configuration</description> </property>
启动HDFS过程
node01机器执行以下命令
cd /export/servers/hadoop-2.7.5bin/hdfs zkfc -formatZKsbin/hadoop-daemons.sh start journalnodebin/hdfs namenode -formatbin/hdfs namenode -initializeSharedEdits -forcesbin/start-dfs.sh
node02下面执行
cd /export/servers/hadoop-2.7.5bin/hdfs namenode -bootstrapStandbysbin/hadoop-daemon.sh start namenode
启动yarn过程
node03下面执行
cd /export/servers/hadoop-2.7.5sbin/start-yarn.sh
node02上执行
cd /export/servers/hadoop-2.7.5sbin/start-yarn.sh
查看resourceManager状态
node03下面执行
cd /export/servers/hadoop-2.7.5bin/yarn rmadmin -getServiceState rm1
node02下面执行
cd /export/servers/hadoop-2.7.5bin/yarn rmadmin -getServiceState rm2
node03启动jobHistory
node03机器执行以下命令启动jobHistory
cd /export/servers/hadoop-2.7.5sbin/mr-jobhistory-daemon.sh start historyserver
hdfs状态查看
node01机器查看hdfs状态
http://192.168.52.100:50070/dfshealth.html#tab-overview
node02机器查看hdfs状态
http://192.168.52.110:50070/dfshealth.html#tab-overview
yarn集群拜访查看
http://node03:8088/cluster
历史工作浏览界面
页面拜访:
http://192.168.52.120:19888/jobhistory