7-4 Structure of a Binary Tree (30分)
Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, a binary tree can be uniquely determined.
Now given a sequence of statements about the structure of the resulting tree, you are supposed to tell if they are correct or not. A statment is one of the following:
- A is the root
- A and B are siblings
- A is the parent of B
- A is the left child of B
- A is the right child of B
- A and B are on the same level
- It is a full tree
Note:
- Two nodes are on the same level, means that they have the same depth.
- A full binary tree is a tree in which every node other than the leaves has two children.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer $N (≤30)$, the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are no more than $10^3$ and are separated by a space.
Then another positive integer $M (≤30)$ is given, followed by M lines of statements. It is guaranteed that both A
and B
in the statements are in the tree.
Output Specification:
For each statement, print in a line Yes
if it is correct, or No
if not.
Sample Input:
916 7 11 32 28 2 23 8 1516 23 7 32 11 2 28 15 8715 is the root8 and 2 are siblings32 is the parent of 1123 is the left child of 1628 is the right child of 27 and 11 are on the same levelIt is a full tree
Sample Output:
YesNoYesNoYesYesYes
题目限度:
题目粗心:
给定一颗二叉树的中序和后序,现有7种不同的查问语句,如果该语句形容正确,输入Yes,否则输入No。
算法思路:
这里给出2种不同的实现形式,一种是先建树,而后应用BFS记录该树的信息(比拟好想到),第二种是在建树的过程中间接记录所须要的所有信息。
首先给出7种查问,该如何判断是否正确的办法:
- A is the root(直接判断后序序列最初一个节点是否和A相等即可)
- A and B are siblings(应用parent数组记录所有的节点的父亲,只有判断parent[A]是否和parent[B]相等即可)
- A is the parent of B(判断parent[B]是否和A相等即可)
- A is the left child of B(应用leftChild数组记录所有节点恶左孩子,判断leftChild[B]与A是否相等即可)
- A is the right child of B(应用rightChild数组记录所有节点恶左孩子,判断rightChild[B]与A是否相等即可)
- A and B are on the same level(应用level数组记录所有节点的档次,而后判断level[A]和level[B]是否相等即可)
- It is a full tree(应用isFullTree记录该树是否存在只有一个孩子的状况,如果是阐明不是full tree,否则就是)
先建树,而后应用BFS获取信息:
Node* createTree(int postL,int postR,int inL,int inR){ if(postL>postR) return nullptr; Node *root = new Node; root->data = post[postR]; int k = pos[post[postR]];// 根节点地位 int numOfLeft = k-inL; root->left = createTree(postL,postL+numOfLeft-1,inL,k-1); root->right = createTree(postL+numOfLeft,postR-1,k+1,inR); return root;}void BFS(Node *root,bool &isFullTree){ queue<Node*> q; root->level = 1; parent[root->data] = -1; level[root->data] = 1; q.push(root); while (!q.empty()){ Node *t = q.front(); q.pop(); if((t->left||t->right)&&!(t->left&&t->right)){ isFullTree = false; } if(t->left!= nullptr){ t->left->level = t->level+1; parent[t->left->data] = t->data; level[t->left->data] = t->level+1; leftChild[t->data] = t->left->data; q.push(t->left); } if(t->right!= nullptr){ t->right->level = t->level+1; level[t->right->data] = t->level+1; parent[t->right->data] = t->data; rightChild[t->data] = t->right->data; q.push(t->right); } }}
在建树的时候获取信息:
bool isFullTree = true;Node* createTree(int postL,int postR,int inL,int inR,int depth,int pa){ if(postL>postR) return nullptr; Node *root = new Node; root->data = post[postR]; parent[root->data] = pa; level[root->data] = depth; int k = pos[post[postR]];// 根节点地位 int numOfLeft = k-inL; root->left = createTree(postL,postL+numOfLeft-1,inL,k-1,depth+1,root->data); root->right = createTree(postL+numOfLeft,postR-1,k+1,inR,depth+1,root->data); leftChild[root->data] = root->left?post[postL+numOfLeft-1]:-1; rightChild[root->data] = root->right?post[postR-1]:-1; if((root->left||root->right)&&!(root->left&&root->right)){ isFullTree = false; } return root;}
将输出的字符串依据空格划分为字符串数组:
string query;getline(cin,query);vector<string> all;string r;for(char i : query){ if(i==' '){ all.push_back(r); r = ""; } else{ r += i; }}all.push_back(r);
留神点:
- 1、在判断类型的时候,最好是先判断长度,再判断关键字,不然测试点1和测试点4会呈现运行时谬误。尤其是在判断A and B are on the same level类型的时候。
- 2、在应用getline第一次输出的时候须要先应用getchar()接管回车。
提交后果:
AC代码1(一遍建树一遍获取信息):
#include<cstdio>#include <string>#include <vector>#include <iostream>using namespace std;/* * 题目粗心: * */struct Node{ int data; Node* left; Node* right;};int N;int in[40],post[40],pos[1005],parent[1005],leftChild[1005],rightChild[1005],level[1005];bool isFullTree = true;Node* createTree(int postL,int postR,int inL,int inR,int depth,int pa){ if(postL>postR) return nullptr; Node *root = new Node; root->data = post[postR]; parent[root->data] = pa; level[root->data] = depth; int k = pos[post[postR]];// 根节点地位 int numOfLeft = k-inL; root->left = createTree(postL,postL+numOfLeft-1,inL,k-1,depth+1,root->data); root->right = createTree(postL+numOfLeft,postR-1,k+1,inR,depth+1,root->data); leftChild[root->data] = root->left?post[postL+numOfLeft-1]:-1; rightChild[root->data] = root->right?post[postR-1]:-1; if((root->left||root->right)&&!(root->left&&root->right)){ isFullTree = false; } return root;}int main(){ scanf("%d",&N); for (int i = 0; i < N; ++i) { scanf("%d",&post[i]); } for (int i = 0; i < N; ++i) { scanf("%d",&in[i]); pos[in[i]] = i; } Node *root = createTree(0,N-1,0,N-1,1,-1); int M; scanf("%d",&M); getchar(); for (int j = 0; j < M; ++j) { string query; getline(cin,query); vector<string> all; string r; for(char i : query){ if(i==' '){ all.push_back(r); r = ""; } else{ r += i; } } all.push_back(r); if(all[3]=="root"){ if(root->data==stoi(all[0])){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[4]=="siblings"){ int a = stoi(all[0]); int b = stoi(all[2]); if(parent[a]==parent[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[3]=="parent"){ int a = stoi(all[0]); int b = stoi(all[5]); if(a==parent[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[3]=="left"){ int a = stoi(all[0]); int b = stoi(all[6]); if(a==leftChild[b]){ printf("Yes\n"); } else { printf("No\n"); } }else if(all[3]=="right"){ int a = stoi(all[0]); int b = stoi(all[6]); if(a==rightChild[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all.size()==8){ int a = stoi(all[0]); int b = stoi(all[2]); if(level[a]==level[b]){ printf("Yes\n"); } else { printf("No\n"); } } else{ if(isFullTree){ printf("Yes\n"); } else { printf("No\n"); } } } return 0;}
AC代码2(先建树后BFS):
#include<cstdio>#include <string>#include <cmath>#include <set>#include <vector>#include <queue>#include <iostream>using namespace std;struct Node{ int data; Node* left; Node* right; int level;};int N;int in[40],post[40],pos[1005],parent[1005],leftChild[1005],rightChild[1005],level[1005];Node* createTree(int postL,int postR,int inL,int inR){ if(postL>postR) return nullptr; Node *root = new Node; root->data = post[postR]; int k = pos[post[postR]];// 根节点地位 int numOfLeft = k-inL; root->left = createTree(postL,postL+numOfLeft-1,inL,k-1); root->right = createTree(postL+numOfLeft,postR-1,k+1,inR); return root;}void BFS(Node *root,bool &isFullTree){ queue<Node*> q; root->level = 1; parent[root->data] = -1; level[root->data] = 1; q.push(root); while (!q.empty()){ Node *t = q.front(); q.pop(); if((t->left||t->right)&&!(t->left&&t->right)){ isFullTree = false; } if(t->left!= nullptr){ t->left->level = t->level+1; parent[t->left->data] = t->data; level[t->left->data] = t->level+1; leftChild[t->data] = t->left->data; q.push(t->left); } if(t->right!= nullptr){ t->right->level = t->level+1; level[t->right->data] = t->level+1; parent[t->right->data] = t->data; rightChild[t->data] = t->right->data; q.push(t->right); } }}int main(){ scanf("%d",&N); for (int i = 0; i < N; ++i) { scanf("%d",&post[i]); } for (int i = 0; i < N; ++i) { scanf("%d",&in[i]); pos[in[i]] = i; } Node *root = createTree(0,N-1,0,N-1); bool isFullTree = true; BFS(root,isFullTree); int M; scanf("%d",&M); for (int j = 0; j < M; ++j) { string query; if(j==0){ // 要排汇第一个回车 getchar(); } getline(cin,query); vector<string> all; string r; for(char i : query){ if(i==' '){ all.push_back(r); r = ""; } else{ r += i; } } all.push_back(r); if(all[3]=="root"){ if(root->data==stoi(all[0])){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[4]=="siblings"){ int a = stoi(all[0]); int b = stoi(all[2]); if(parent[a]==parent[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[3]=="parent"){ int a = stoi(all[0]); int b = stoi(all[5]); if(a==parent[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all[3]=="left"){ int a = stoi(all[0]); int b = stoi(all[6]); if(a==leftChild[b]){ printf("Yes\n"); } else { printf("No\n"); } }else if(all[3]=="right"){ int a = stoi(all[0]); int b = stoi(all[6]); if(a==rightChild[b]){ printf("Yes\n"); } else { printf("No\n"); } } else if(all.size()==8){ int a = stoi(all[0]); int b = stoi(all[2]); if(level[a]==level[b]){ printf("Yes\n"); } else { printf("No\n"); } } else{ if(isFullTree){ printf("Yes\n"); } else { printf("No\n"); } } } return 0;}