No.1设计有序流

解题思路

依照题意编码即可.

代码展现

class OrderedStream {    private final String[] strings;    private int ptr;    public OrderedStream(int n) {        strings = new String[n];        ptr = 0;    }    public List<String> insert(int id, String value) {        id--;  // 数组下标从 0 开始        strings[id] = value;        List<String> res = new ArrayList<>();        for (; ptr < strings.length && strings[ptr] != null; ptr++) {            res.add(strings[ptr]);        }        return res;    }}

No.2确定两个字符串是否靠近

解题思路

解读、剖析失去两个字符串靠近的条件:

  1. 字符集雷同
  2. 每种字符呈现的次数形成的序列雷同

代码展现

class Solution {    public boolean closeStrings(String word1, String word2) {        int[] cnt1 = new int[26];        for (int i = 0; i < word1.length(); i++) {            cnt1[word1.charAt(i) - 'a']++;        }        int[] cnt2 = new int[26];        for (int i = 0; i < word2.length(); i++) {            cnt2[word2.charAt(i) - 'a']++;        }        // 字符集雷同        for (int i = 0; i < 26; i++) {            // 字符 i 若在 word1 中呈现, 那么在 word2 中也必须呈现            if (cnt1[i] + cnt2[i] != 0 && cnt1[i] * cnt2[i] == 0) {                return false;            }        }        // 次数序列雷同        Arrays.sort(cnt1);        Arrays.sort(cnt2);        for (int i = 0; i < 26; i++) {            if (cnt1[i] != cnt2[i]) {                return false;            }        }        return true;    }}

No.3将x减到0的最小操作数

解题思路

两根指针, 详见正文.

代码展现

class Solution {    public int minOperations(int[] nums, int x) {        // 预处理出前缀和与后缀和, 不便后续计算        int[] prefixSum = new int[nums.length];        int[] suffixSum = new int[nums.length];        prefixSum[0] = nums[0];        for (int i = 1; i < nums.length; i++) {            prefixSum[i] = prefixSum[i - 1] + nums[i];        }        suffixSum[nums.length - 1] = nums[nums.length - 1];        for (int i = nums.length - 2; i >= 0; i--) {            suffixSum[i] = suffixSum[i + 1] + nums[i];        }        // 两根指针 left 和 right        int res = nums.length + 1;        int left = 0, right = 0;        // [0, left) + [right, nums.length)        for (; left < nums.length; left++) {            while (right < nums.length && calcSum(left, right, prefixSum, suffixSum) > x) {                right++;            }            if (calcSum(left, right, prefixSum, suffixSum) == x) {                int len = left + nums.length - right;                res = Math.min(res, len);            }        }        return res > nums.length ? -1 : res;    }    private int calcSum(int left, int right, int[] prefixSum, int[] suffixSum) {        // [0, left) + [right, nums.length)        return (left > 0 ? prefixSum[left - 1] : 0) +                (right < suffixSum.length ? suffixSum[right] : 0);    }}

No.4最大化网格幸福感

解题思路

深度优先搜寻 (回溯).

实质上就是枚举每一个格子是调配内向的人, 还是外向的人, 还是不调配.

下述代码展现思路, 能够计算出正确答案, 然而会超出工夫限度.

进一步优化能够将 grid 进行压缩并且记忆化, 方可通过.

代码展现
class Solution {

private int res;public int getMaxGridHappiness(int m, int n, int introvertsCount, int extrovertsCount) {    res = 0;    dfs(0, 0, m, n, new byte[m][n], introvertsCount, extrovertsCount);    return res;}private void dfs(int x, int y, int m, int n, byte[][] grid, int introvertsCount, int extrovertsCount) {    if (y == n) {        x++;        y = 0;    }    if (x == m || introvertsCount + extrovertsCount == 0) {        res = Math.max(calc(grid), res);        return;    }    // 优化点: 就算剩下的人都取最大幸福值也不如以后答案优良, 进行搜寻.    if (introvertsCount * 120 + extrovertsCount * 120 + calc(grid) <= res) {        return;    }    if (extrovertsCount > 0) {        grid[x][y] = 2;        dfs(x, y + 1, m, n, grid, introvertsCount, extrovertsCount - 1);        grid[x][y] = 0;    }    if (introvertsCount > 0) {        grid[x][y] = 1;        dfs(x, y + 1, m, n, grid, introvertsCount - 1, extrovertsCount);        grid[x][y] = 0;    }    dfs(x, y + 1, m, n, grid, introvertsCount, extrovertsCount);}private int calc(byte[][] grid) {    int[] dx = {1, -1, 0, 0};    int[] dy = {0, 0, 1, -1};    int res = 0;    for (int i = 0; i < grid.length; i++) {        for (int j = 0; j < grid[0].length; j++) {            if (grid[i][j] == 0) {                continue;            }            res += grid[i][j] == 1 ? 120 : 40;            int inc = grid[i][j] == 1 ? -30 : 20;            for (int k = 0; k < 4; k++) {                int x = i + dx[k];                int y = j + dy[k];                if (x < 0 || y < 0 || x >= grid.length || y >= grid[0].length) {                    continue;                }                if (grid[x][y] > 0) {                    res += inc;                }            }        }    }    return res;}

}