俄罗斯方块
俄罗斯方块是由俄罗斯程序员Alexey Pajitnov在1985年设计和编程的。
在这个游戏中,咱们有七种不同的形态:S形,Z形,T形,L形,线形,镜面L形,和一个方形。每一个形态都是由四个小正方形组成的。这些形态都是从棋盘上掉下来的。俄罗斯方块游戏的目标是挪动和旋转这些形态,使它们尽可能地适宜。如果咱们胜利地造成一排,这一排就会被销毁,咱们就会得分。咱们玩俄罗斯方块游戏,直到咱们达到顶点。
<img src="https://mymarkdowm.oss-cn-beijing.aliyuncs.com/markdownimg/tetrominoes.png" alt="Tetrominoes" style="zoom:50%;" />
wxPython 是一个用于创立应用程序的工具包。还有一些其余的库比方pygame是针对创立电脑游戏的,但wxPython也能够用来创立游戏。
开发过程
咱们的俄罗斯方块游戏没有图像,咱们应用wxPython中提供的绘图API绘制俄罗斯方块。每一个电脑游戏的背地,都有一个数学模型。俄罗斯方块中也是如此。
游戏背地的一些根底想法。
- 用wx.Timer来创立一个游戏循环。
- 画出不同形态
- 形态以方块为单位挪动(而不是以像素为单位)。
- 在数学上,棋盘是一个简略的数字列表。
#tetris_game.pyimport wximport randomclass Tetris(wx.Frame): def __init__(self, parent): wx.Frame.__init__(self, parent, size=(180, 380), style=wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER ^ wx.MAXIMIZE_BOX) self.initFrame() def initFrame(self): #状态栏 显示分数 self.statusbar = self.CreateStatusBar() self.statusbar.SetStatusText('0') #主board self.board = Board(self) self.board.SetFocus() self.board.start() self.SetTitle("俄罗斯方块") self.Centre()class Board(wx.Panel): BoardWidth = 10 BoardHeight = 22 Speed = 300 ID_TIMER = 1 def __init__(self, *args, **kw): super(Board, self).__init__(*args, **kw) self.initBoard() def initBoard(self): self.timer = wx.Timer(self, Board.ID_TIMER) self.isWaitingAfterLine = False self.curPiece = Shape() self.nextPiece = Shape() self.curX = 0 self.curY = 0 self.numLinesRemoved = 0 self.board = [] self.isStarted = False self.isPaused = False self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown) self.Bind(wx.EVT_TIMER, self.OnTimer, id=Board.ID_TIMER) self.clearBoard() def shapeAt(self, x, y): return self.board[(y * Board.BoardWidth) + x] def setShapeAt(self, x, y, shape): self.board[(y * Board.BoardWidth) + x] = shape def squareWidth(self): return self.GetClientSize().GetWidth() // Board.BoardWidth def squareHeight(self): return self.GetClientSize().GetHeight() // Board.BoardHeight def start(self): if self.isPaused: return self.isStarted = True self.isWaitingAfterLine = False self.numLinesRemoved = 0 self.clearBoard() self.newPiece() self.timer.Start(Board.Speed) def pause(self): if not self.isStarted: return self.isPaused = not self.isPaused statusbar = self.GetParent().statusbar if self.isPaused: self.timer.Stop() statusbar.SetStatusText('paused') else: self.timer.Start(Board.Speed) statusbar.SetStatusText(str(self.numLinesRemoved)) self.Refresh() def clearBoard(self): for i in range(Board.BoardHeight * Board.BoardWidth): self.board.append(Tetrominoes.NoShape) def OnPaint(self, event): dc = wx.PaintDC(self) size = self.GetClientSize() boardTop = size.GetHeight() - Board.BoardHeight * self.squareHeight() for i in range(Board.BoardHeight): for j in range(Board.BoardWidth): shape = self.shapeAt(j, Board.BoardHeight - i - 1) if shape != Tetrominoes.NoShape: self.drawSquare(dc, 0 + j * self.squareWidth(), boardTop + i * self.squareHeight(), shape) if self.curPiece.shape() != Tetrominoes.NoShape: for i in range(4): x = self.curX + self.curPiece.x(i) y = self.curY - self.curPiece.y(i) self.drawSquare(dc, 0 + x * self.squareWidth(), boardTop + (Board.BoardHeight - y - 1) * self.squareHeight(), self.curPiece.shape()) def OnKeyDown(self, event): if not self.isStarted or self.curPiece.shape() == Tetrominoes.NoShape: event.Skip() return keycode = event.GetKeyCode() if keycode == ord('P') or keycode == ord('p'): self.pause() return if self.isPaused: return elif keycode == wx.WXK_LEFT: self.tryMove(self.curPiece, self.curX - 1, self.curY) elif keycode == wx.WXK_RIGHT: self.tryMove(self.curPiece, self.curX + 1, self.curY) elif keycode == wx.WXK_DOWN: self.tryMove(self.curPiece.rotatedRight(), self.curX, self.curY) elif keycode == wx.WXK_UP: self.tryMove(self.curPiece.rotatedLeft(), self.curX, self.curY) elif keycode == wx.WXK_SPACE: self.dropDown() elif keycode == ord('D') or keycode == ord('d'): self.oneLineDown() else: event.Skip() def OnTimer(self, event): if event.GetId() == Board.ID_TIMER: if self.isWaitingAfterLine: self.isWaitingAfterLine = False self.newPiece() else: self.oneLineDown() else: event.Skip() def dropDown(self): newY = self.curY while newY > 0: if not self.tryMove(self.curPiece, self.curX, newY - 1): break newY -= 1 self.pieceDropped() def oneLineDown(self): if not self.tryMove(self.curPiece, self.curX, self.curY - 1): self.pieceDropped() def pieceDropped(self): for i in range(4): x = self.curX + self.curPiece.x(i) y = self.curY - self.curPiece.y(i) self.setShapeAt(x, y, self.curPiece.shape()) self.removeFullLines() if not self.isWaitingAfterLine: self.newPiece() def removeFullLines(self): numFullLines = 0 statusbar = self.GetParent().statusbar rowsToRemove = [] for i in range(Board.BoardHeight): n = 0 for j in range(Board.BoardWidth): if not self.shapeAt(j, i) == Tetrominoes.NoShape: n = n + 1 if n == 10: rowsToRemove.append(i) rowsToRemove.reverse() for m in rowsToRemove: for k in range(m, Board.BoardHeight): for l in range(Board.BoardWidth): self.setShapeAt(l, k, self.shapeAt(l, k + 1)) numFullLines = numFullLines + len(rowsToRemove) if numFullLines > 0: self.numLinesRemoved = self.numLinesRemoved + numFullLines statusbar.SetStatusText(str(self.numLinesRemoved)) self.isWaitingAfterLine = True self.curPiece.setShape(Tetrominoes.NoShape) self.Refresh() def newPiece(self): self.curPiece = self.nextPiece statusbar = self.GetParent().statusbar self.nextPiece.setRandomShape() self.curX = Board.BoardWidth // 2 + 1 self.curY = Board.BoardHeight - 1 + self.curPiece.minY() if not self.tryMove(self.curPiece, self.curX, self.curY): self.curPiece.setShape(Tetrominoes.NoShape) self.timer.Stop() self.isStarted = False statusbar.SetStatusText('Game over') def tryMove(self, newPiece, newX, newY): for i in range(4): x = newX + newPiece.x(i) y = newY - newPiece.y(i) if x < 0 or x >= Board.BoardWidth or y < 0 or y >= Board.BoardHeight: return False if self.shapeAt(x, y) != Tetrominoes.NoShape: return False self.curPiece = newPiece self.curX = newX self.curY = newY self.Refresh() return True def drawSquare(self, dc, x, y, shape): colors = ['#000000', '#CC6666', '#66CC66', '#6666CC', '#CCCC66', '#CC66CC', '#66CCCC', '#DAAA00'] light = ['#000000', '#F89FAB', '#79FC79', '#7979FC', '#FCFC79', '#FC79FC', '#79FCFC', '#FCC600'] dark = ['#000000', '#803C3B', '#3B803B', '#3B3B80', '#80803B', '#803B80', '#3B8080', '#806200'] pen = wx.Pen(light[shape]) pen.SetCap(wx.CAP_PROJECTING) dc.SetPen(pen) dc.DrawLine(x, y + self.squareHeight() - 1, x, y) dc.DrawLine(x, y, x + self.squareWidth() - 1, y) darkpen = wx.Pen(dark[shape]) darkpen.SetCap(wx.CAP_PROJECTING) dc.SetPen(darkpen) dc.DrawLine(x + 1, y + self.squareHeight() - 1, x + self.squareWidth() - 1, y + self.squareHeight() - 1) dc.DrawLine(x + self.squareWidth() - 1, y + self.squareHeight() - 1, x + self.squareWidth() - 1, y + 1) dc.SetPen(wx.TRANSPARENT_PEN) dc.SetBrush(wx.Brush(colors[shape])) dc.DrawRectangle(x + 1, y + 1, self.squareWidth() - 2, self.squareHeight() - 2)class Tetrominoes(object): NoShape = 0 ZShape = 1 SShape = 2 LineShape = 3 TShape = 4 SquareShape = 5 LShape = 6 MirroredLShape = 7class Shape(object): coordsTable = ( ((0, 0), (0, 0), (0, 0), (0, 0)), ((0, -1), (0, 0), (-1, 0), (-1, 1)), ((0, -1), (0, 0), (1, 0), (1, 1)), ((0, -1), (0, 0), (0, 1), (0, 2)), ((-1, 0), (0, 0), (1, 0), (0, 1)), ((0, 0), (1, 0), (0, 1), (1, 1)), ((-1, -1), (0, -1), (0, 0), (0, 1)), ((1, -1), (0, -1), (0, 0), (0, 1)) ) def __init__(self): self.coords = [[0,0] for i in range(4)] self.pieceShape = Tetrominoes.NoShape self.setShape(Tetrominoes.NoShape) def shape(self): return self.pieceShape def setShape(self, shape): table = Shape.coordsTable[shape] for i in range(4): for j in range(2): self.coords[i][j] = table[i][j] self.pieceShape = shape def setRandomShape(self): self.setShape(random.randint(1, 7)) def x(self, index): return self.coords[index][0] def y(self, index): return self.coords[index][1] def setX(self, index, x): self.coords[index][0] = x def setY(self, index, y): self.coords[index][1] = y def minX(self): m = self.coords[0][0] for i in range(4): m = min(m, self.coords[i][0]) return m def maxX(self): m = self.coords[0][0] for i in range(4): m = max(m, self.coords[i][0]) return m def minY(self): m = self.coords[0][1] for i in range(4): m = min(m, self.coords[i][1]) return m def maxY(self): m = self.coords[0][1] for i in range(4): m = max(m, self.coords[i][1]) return m def rotatedLeft(self): if self.pieceShape == Tetrominoes.SquareShape: return self result = Shape() result.pieceShape = self.pieceShape for i in range(4): result.setX(i, self.y(i)) result.setY(i, -self.x(i)) return result def rotatedRight(self): if self.pieceShape == Tetrominoes.SquareShape: return self result = Shape() result.pieceShape = self.pieceShape for i in range(4): result.setX(i, -self.y(i)) result.setY(i, self.x(i)) return resultdef main(): app = wx.App() ex = Tetris(None) ex.Show() app.MainLoop()if __name__ == '__main__': main()
<img src="https://mymarkdowm.oss-cn-beijing.aliyuncs.com/markdownimg/image-20201115192956845.png" alt="image-20201115192956845" style="zoom:50%;" />
应用程序启动后,立刻开始。咱们能够通过按p键来暂停游戏。空格键会将掉落的俄罗斯方块立刻掉到底部。d键则会使棋子减速着落。方向下键会旋转形态。游戏以恒定的速度进行,分数是咱们删除的排数。
...self.curX = 0self.curY = 0self.numLinesRemoved = 0self.board = []...
在开始游戏循环之前,咱们先初始化一些重要的变量。self.board
变量是一个从0到7的数字列表。它代表各种形态的地位和形态在棋盘上的陈迹。
for i in range(Board.BoardHeight): for j in range(Board.BoardWidth): shape = self.shapeAt(j, Board.BoardHeight - i - 1) if shape != Tetrominoes.NoShape: self.drawSquare(dc, 0 + j * self.squareWidth(), boardTop + i * self.squareHeight(), shape)
游戏的绘画分为两个步骤。第一步,咱们画出所有的形态,或者是掉到棋盘底部的形态。所有的方块都被保留在self.board
列表变量中。咱们应用shapeAt()
办法拜访它。
if self.curPiece.shape() != Tetrominoes.NoShape: for i in range(4): x = self.curX + self.curPiece.x(i) y = self.curY - self.curPiece.y(i) self.drawSquare(dc, 0 + x * self.squareWidth(), boardTop + (Board.BoardHeight - y - 1) * self.squareHeight(), self.curPiece.shape())
下一步是画出落下的理论作品。
elif keycode == wx.WXK_LEFT: self.tryMove(self.curPiece, self.curX - 1, self.curY)
在OnKeyDown()办法中,咱们查看是否有按键被按下。如果按了右边的方向键,就会尝试将棋子向左挪动。tryMove是因为棋子可能无奈挪动(边界上)。
def tryMove(self, newPiece, newX, newY): for i in range(4): x = newX + newPiece.x(i) y = newY - newPiece.y(i) if x < 0 or x >= Board.BoardWidth or y < 0 or y >= Board.BoardHeight: return False if self.shapeAt(x, y) != Tetrominoes.NoShape: return False self.curPiece = newPiece self.curX = newX self.curY = newY self.Refresh() return True
在tryMove()
办法中,咱们尝试挪动咱们的形态。如果形态在棋盘的边缘或与其余棋子相邻,咱们返回 "False";否则咱们将以后着落的棋子搁置到新的地位并返回 "True"。
def OnTimer(self, event): if event.GetId() == Board.ID_TIMER: if self.isWaitingAfterLine: self.isWaitingAfterLine = False self.newPiece() else: self.oneLineDown() else: event.Skip()
在OnTimer()
办法中,咱们要么在前一个棋子落到底部后,创立一个新的棋子,要么将落下的棋子向下挪动一行。
def removeFullLines(self): numFullLines = 0 rowsToRemove = [] for i in range(Board.BoardHeight): n = 0 for j in range(Board.BoardWidth): if not self.shapeAt(j, i) == Tetrominoes.NoShape: n = n + 1 if n == 10: rowsToRemove.append(i) rowsToRemove.reverse() for m in rowsToRemove: for k in range(m, Board.BoardHeight): for l in range(Board.BoardWidth): self.setShapeAt(l, k, self.shapeAt(l, k + 1))...
如果形态达到底部,就调用removeFullLines()办法。首先咱们找出所有的满行,并将其删除。咱们的做法是将以后要删除的满行之上的所有行向下挪动一行。
def newPiece(self): self.curPiece = self.nextPiece statusbar = self.GetParent().statusbar self.nextPiece.setRandomShape() self.curX = Board.BoardWidth / 2 + 1 self.curY = Board.BoardHeight - 1 + self.curPiece.minY() if not self.tryMove(self.curPiece, self.curX, self.curY): self.curPiece.setShape(Tetrominoes.NoShape) self.timer.Stop() self.isStarted = False statusbar.SetStatusText('Game over')
newPiece()
办法随机创立一个新的俄罗斯方块。如果这个棋子不能进入它的初始地位,游戏就完结了。
Shape
类保留了俄罗斯方块的信息。
self.coords = [[0,0] for i in range(4)]
创立后咱们创立一个空的坐标列表。该列表将保留俄罗斯方块片的坐标。例如,元组(0,-1),(0,0),(-1,0),(-1,-1)代表一个旋转的S形。下图阐明了这个形态。
<img src="https://mymarkdowm.oss-cn-beijing.aliyuncs.com/markdownimg/coordinates.png" alt="Coordinates" style="zoom:50%;" />
当画出以后落下的棋子时,咱们在self.curX
和self.curY地位
画出它。而后咱们看坐标表,把四个方块都画进去。