欢送拜访我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,波及Java、Docker、Kubernetes、DevOPS等;
本篇概览
本文是《Flink的sink实战》系列的第三篇,次要内容是体验Flink官网的cassandra connector,整个实战如下图所示,咱们先从kafka获取字符串,再执行wordcount操作,而后将后果同时打印和写入cassandra:
全系列链接
- 《Flink的sink实战之一:初探》
- 《Flink的sink实战之二:kafka》
- 《Flink的sink实战之三:cassandra3》
- 《Flink的sink实战之四:自定义》
软件版本
本次实战的软件版本信息如下:
- cassandra:3.11.6
- kafka:2.4.0(scala:2.12)
- jdk:1.8.0_191
- flink:1.9.2
- maven:3.6.0
- flink所在操作系统:CentOS Linux release 7.7.1908
- cassandra所在操作系统:CentOS Linux release 7.7.1908
- IDEA:2018.3.5 (Ultimate Edition)
对于cassandra
本次用到的cassandra是三台集群部署的集群,搭建形式请参考《ansible疾速部署cassandra3集群》
筹备cassandra的keyspace和表
先创立keyspace和table:
- <font color="blue">cqlsh</font>登录cassandra:
cqlsh 192.168.133.168
- 创立keyspace(3正本):
CREATE KEYSPACE IF NOT EXISTS example WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '3'};
- 建表:
CREATE TABLE IF NOT EXISTS example.wordcount ( word text, count bigint, PRIMARY KEY(word) );
筹备kafka的topic
- 启动kafka服务;
- 创立名为test001的topic,参考命令如下:
./kafka-topics.sh \--create \--bootstrap-server 127.0.0.1:9092 \--replication-factor 1 \--partitions 1 \--topic test001
- 进入发送音讯的会话模式,参考命令如下:
./kafka-console-producer.sh \--broker-list kafka:9092 \--topic test001
- 在会话模式下,输出任意字符串而后回车,都会将字符串音讯发送到broker;
源码下载
如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blo...:
名称 | 链接 | 备注 |
---|---|---|
我的项目主页 | https://github.com/zq2599/blo... | 该我的项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blo... | 该我的项目源码的仓库地址,https协定 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该我的项目源码的仓库地址,ssh协定 |
这个git我的项目中有多个文件夹,本章的利用在<font color="blue">flinksinkdemo</font>文件夹下,如下图红框所示:
两种写入cassandra的形式
flink官网的connector反对两种形式写入cassandra:
- Tuple类型写入:将Tuple对象的字段对齐到指定的SQL的参数中;
- POJO类型写入:通过DataStax,将POJO对象对应到注解配置的表和字段中;
接下来别离应用这两种形式;
开发(Tuple写入)
- 《Flink的sink实战之二:kafka》中创立了<font color="blue">flinksinkdemo</font>工程,在此持续应用;
- 在pom.xml中减少casandra的connector依赖:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-cassandra_2.11</artifactId> <version>1.10.0</version></dependency>
- 另外还要增加<font color="blue">flink-streaming-scala</font>依赖,否则编译<font color="blue">CassandraSink.addSink</font>这段代码会失败:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId> <version>${flink.version}</version> <scope>provided</scope></dependency>
- 新增CassandraTuple2Sink.java,这就是Job类,外面从kafka获取字符串音讯,而后转成Tuple2类型的数据集写入cassandra,写入的关键点是Tuple内容和指定SQL中的参数的匹配:
package com.bolingcavalry.addsink;import org.apache.flink.api.common.functions.FlatMapFunction;import org.apache.flink.api.common.serialization.SimpleStringSchema;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.connectors.cassandra.CassandraSink;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import org.apache.flink.util.Collector;import java.util.Properties;public class CassandraTuple2Sink { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(1); //连贯kafka用到的属性对象 Properties properties = new Properties(); //broker地址 properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); //zookeeper地址 properties.setProperty("zookeeper.connect", "192.168.50.43:2181"); //消费者的groupId properties.setProperty("group.id", "flink-connector"); //实例化Consumer类 FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>( "test001", new SimpleStringSchema(), properties ); //指定从最新地位开始生产,相当于放弃历史音讯 flinkKafkaConsumer.setStartFromLatest(); //通过addSource办法失去DataSource DataStream<String> dataStream = env.addSource(flinkKafkaConsumer); DataStream<Tuple2<String, Long>> result = dataStream .flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() { @Override public void flatMap(String value, Collector<Tuple2<String, Long>> out) { String[] words = value.toLowerCase().split("\\s"); for (String word : words) { //cassandra的表中,每个word都是主键,因而不能为空 if (!word.isEmpty()) { out.collect(new Tuple2<String, Long>(word, 1L)); } } } } ) .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1); result.addSink(new PrintSinkFunction<>()) .name("print Sink") .disableChaining(); CassandraSink.addSink(result) .setQuery("INSERT INTO example.wordcount(word, count) values (?, ?);") .setHost("192.168.133.168") .build() .name("cassandra Sink") .disableChaining(); env.execute("kafka-2.4 source, cassandra-3.11.6 sink, tuple2"); }}
- 上述代码中,从kafka获得数据,做了word count解决后写入到cassandra,留神addSink办法后的一连串API(蕴含了数据库连贯的参数),这是flink官网举荐的操作,另外为了在Flink web UI看清楚DAG状况,这里调用disableChaining办法勾销了operator chain,生产环境中这一行能够去掉;
- 编码实现后,执行<font color="blue">mvn clean package -U -DskipTests</font>构建,在target目录失去文件<font color="blue">flinksinkdemo-1.0-SNAPSHOT.jar</font>;
- 在Flink的web UI上传<font color="blue">flinksinkdemo-1.0-SNAPSHOT.jar</font>,并指定执行类,如下图红框所示:
- 启动工作后DAG如下:
- 去后面创立的发送kafka音讯的会话模式窗口,发送一个字符串"aaa bbb ccc aaa aaa aaa";
- 查看cassandra数据,发现曾经新增了三条记录,内容合乎预期:
- 查看TaskManager控制台输入,外面有Tuple2数据集的打印后果,和cassandra的统一:
- DAG上所有SubTask的记录数也合乎预期:
开发(POJO写入)
接下来尝试POJO写入,即业务逻辑中的数据结构实例被写入cassandra,无需指定SQL:
- 实现POJO写入数据库,须要datastax库的反对,在pom.xml中减少以下依赖:
<dependency> <groupId>com.datastax.cassandra</groupId> <artifactId>cassandra-driver-core</artifactId> <version>3.1.4</version> <classifier>shaded</classifier> <!-- Because the shaded JAR uses the original POM, you still need to exclude this dependency explicitly: --> <exclusions> <exclusion> <groupId>io.netty</groupId> <artifactId>*</artifactId> </exclusion> </exclusions></dependency>
- 请留神下面配置的<font color="blue">exclusions</font>节点,依赖datastax的时候,依照官网领导对netty相干的间接依赖做排除,官网地址:https://docs.datastax.com/en/...
- 创立带有数据库相干注解的实体类WordCount:
package com.bolingcavalry.addsink;import com.datastax.driver.mapping.annotations.Column;import com.datastax.driver.mapping.annotations.Table;@Table(keyspace = "example", name = "wordcount")public class WordCount { @Column(name = "word") private String word = ""; @Column(name = "count") private long count = 0; public WordCount() { } public WordCount(String word, long count) { this.setWord(word); this.setCount(count); } public String getWord() { return word; } public void setWord(String word) { this.word = word; } public long getCount() { return count; } public void setCount(long count) { this.count = count; } @Override public String toString() { return getWord() + " : " + getCount(); }}
- 而后创立工作类CassandraPojoSink:
package com.bolingcavalry.addsink;import com.datastax.driver.mapping.Mapper;import com.datastax.shaded.netty.util.Recycler;import org.apache.flink.api.common.functions.FlatMapFunction;import org.apache.flink.api.common.functions.ReduceFunction;import org.apache.flink.api.common.serialization.SimpleStringSchema;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.connectors.cassandra.CassandraSink;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import org.apache.flink.util.Collector;import java.util.Properties;public class CassandraPojoSink { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(1); //连贯kafka用到的属性对象 Properties properties = new Properties(); //broker地址 properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); //zookeeper地址 properties.setProperty("zookeeper.connect", "192.168.50.43:2181"); //消费者的groupId properties.setProperty("group.id", "flink-connector"); //实例化Consumer类 FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>( "test001", new SimpleStringSchema(), properties ); //指定从最新地位开始生产,相当于放弃历史音讯 flinkKafkaConsumer.setStartFromLatest(); //通过addSource办法失去DataSource DataStream<String> dataStream = env.addSource(flinkKafkaConsumer); DataStream<WordCount> result = dataStream .flatMap(new FlatMapFunction<String, WordCount>() { @Override public void flatMap(String s, Collector<WordCount> collector) throws Exception { String[] words = s.toLowerCase().split("\\s"); for (String word : words) { if (!word.isEmpty()) { //cassandra的表中,每个word都是主键,因而不能为空 collector.collect(new WordCount(word, 1L)); } } } }) .keyBy("word") .timeWindow(Time.seconds(5)) .reduce(new ReduceFunction<WordCount>() { @Override public WordCount reduce(WordCount wordCount, WordCount t1) throws Exception { return new WordCount(wordCount.getWord(), wordCount.getCount() + t1.getCount()); } }); result.addSink(new PrintSinkFunction<>()) .name("print Sink") .disableChaining(); CassandraSink.addSink(result) .setHost("192.168.133.168") .setMapperOptions(() -> new Mapper.Option[] { Mapper.Option.saveNullFields(true) }) .build() .name("cassandra Sink") .disableChaining(); env.execute("kafka-2.4 source, cassandra-3.11.6 sink, pojo"); }}
- 从上述代码可见,和后面的Tuple写入类型有很大差异,为了筹备好POJO类型的数据集,除了flatMap的匿名类入参要改写,还要写好reduce办法的匿名类入参,并且还要调用setMapperOptions设置映射规定;
- 编译构建后,上传jar到flink,并且指定工作类为CassandraPojoSink:
- 清理之前的数据,在cassandra的cqlsh上执行<font color="blue">TRUNCATE example.wordcount;</font>
- 像之前那样发送字符串音讯到kafka:
- 查看数据库,发现后果合乎预期:
- DAG和SubTask状况如下:
至此,flink的后果数据写入cassandra的实战就实现了,心愿能给您一些参考;
欢送关注公众号:程序员欣宸
微信搜寻「程序员欣宸」,我是欣宸,期待与您一起畅游Java世界...
https://github.com/zq2599/blog_demos