欢送拜访我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,波及Java、Docker、Kubernetes、DevOPS等;
本篇概览
本文是《Flink的sink实战》系列的第二篇,前文《Flink的sink实战之一:初探》对sink有了根本的理解,本章来体验将数据sink到kafka的操作;
全系列链接
- 《Flink的sink实战之一:初探》
- 《Flink的sink实战之二:kafka》
- 《Flink的sink实战之三:cassandra3》
- 《Flink的sink实战之四:自定义》
版本和环境筹备
本次实战的环境和版本如下:
- JDK:1.8.0_211
- Flink:1.9.2
- Maven:3.6.0
- 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
- IDEA:2018.3.5 (Ultimate Edition)
- Kafka:2.4.0
- Zookeeper:3.5.5
<font color="red">请确保上述环境和服务曾经就绪;</font>
源码下载
如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blo...:
名称 | 链接 | 备注 |
---|---|---|
我的项目主页 | https://github.com/zq2599/blo... | 该我的项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blo... | 该我的项目源码的仓库地址,https协定 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该我的项目源码的仓库地址,ssh协定 |
这个git我的项目中有多个文件夹,本章的利用在<font color="blue">flinksinkdemo</font>文件夹下,如下图红框所示:
筹备结束,开始开发;
筹备工作
正式编码前,先去官网查看相干材料理解根本状况:
- 地址:https://ci.apache.org/project...
- 我这里用的kafka是2.4.0版本,在官网文档查找对应的库和类,如下图红框所示:
kafka筹备
- 创立名为test006的topic,有四个分区,参考命令:
./kafka-topics.sh \--create \--bootstrap-server 127.0.0.1:9092 \--replication-factor 1 \--partitions 4 \--topic test006
- 在控制台生产test006的音讯,参考命令:
./kafka-console-consumer.sh \--bootstrap-server 127.0.0.1:9092 \--topic test006
- 此时如果该topic有音讯进来,就会在控制台输入;
- 接下来开始编码;
创立工程
- 用maven命令创立flink工程:
mvn \archetype:generate \-DarchetypeGroupId=org.apache.flink \-DarchetypeArtifactId=flink-quickstart-java \-DarchetypeVersion=1.9.2
- 依据提醒,groupid输出<font color="blue">com.bolingcavalry</font>,artifactid输出<font color="blue">flinksinkdemo</font>,即可创立一个maven工程;
- 在pom.xml中减少kafka依赖库:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>1.9.0</version></dependency>
- 工程创立实现,开始编写flink工作的代码;
发送字符串音讯的sink
先尝试发送字符串类型的音讯:
- 创立KafkaSerializationSchema接口的实现类,前面这个类要作为创立sink对象的参数应用:
package com.bolingcavalry.addsink;import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;import org.apache.kafka.clients.producer.ProducerRecord;import java.nio.charset.StandardCharsets;public class ProducerStringSerializationSchema implements KafkaSerializationSchema<String> { private String topic; public ProducerStringSerializationSchema(String topic) { super(); this.topic = topic; } @Override public ProducerRecord<byte[], byte[]> serialize(String element, Long timestamp) { return new ProducerRecord<byte[], byte[]>(topic, element.getBytes(StandardCharsets.UTF_8)); }}
- 创立工作类KafkaStrSink,请留神FlinkKafkaProducer对象的参数,FlinkKafkaProducer.Semantic.EXACTLY_ONCE示意严格一次:
package com.bolingcavalry.addsink;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;import java.util.ArrayList;import java.util.List;import java.util.Properties;public class KafkaStrSink { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //并行度为1 env.setParallelism(1); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); String topic = "test006"; FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(topic, new ProducerStringSerializationSchema(topic), properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE); //创立一个List,外面有两个Tuple2元素 List<String> list = new ArrayList<>(); list.add("aaa"); list.add("bbb"); list.add("ccc"); list.add("ddd"); list.add("eee"); list.add("fff"); list.add("aaa"); //统计每个单词的数量 env.fromCollection(list) .addSink(producer) .setParallelism(4); env.execute("sink demo : kafka str"); }}
- 应用mvn命令编译构建,在target目录失去文件<font color="blue">flinksinkdemo-1.0-SNAPSHOT.jar</font>;
- 在flink的web页面提交flinksinkdemo-1.0-SNAPSHOT.jar,并制订执行类,如下图:
- 提交胜利后,如果flink有四个可用slot,工作会立刻执行,会在生产kafak音讯的终端收到音讯,如下图:
- 工作执行状况如下图:
发送对象音讯的sink
再来尝试如何发送对象类型的音讯,这里的对象抉择罕用的Tuple2对象:
- 创立KafkaSerializationSchema接口的实现类,该类前面要用作sink对象的入参,请留神代码中捕捉异样的那段正文:<font color="red">生产环境慎用printStackTrace()!!!</font>
package com.bolingcavalry.addsink;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonProcessingException;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;import org.apache.kafka.clients.producer.ProducerRecord;import javax.annotation.Nullable;public class ObjSerializationSchema implements KafkaSerializationSchema<Tuple2<String, Integer>> { private String topic; private ObjectMapper mapper; public ObjSerializationSchema(String topic) { super(); this.topic = topic; } @Override public ProducerRecord<byte[], byte[]> serialize(Tuple2<String, Integer> stringIntegerTuple2, @Nullable Long timestamp) { byte[] b = null; if (mapper == null) { mapper = new ObjectMapper(); } try { b= mapper.writeValueAsBytes(stringIntegerTuple2); } catch (JsonProcessingException e) { // 留神,在生产环境这是个十分危险的操作, // 过多的谬误打印会重大影响零碎性能,请依据生产环境状况做调整 e.printStackTrace(); } return new ProducerRecord<byte[], byte[]>(topic, b); }}
- 创立flink工作类:
package com.bolingcavalry.addsink;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;import java.util.ArrayList;import java.util.List;import java.util.Properties;public class KafkaObjSink { public static void main(String[] args) throws Exception { final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //并行度为1 env.setParallelism(1); Properties properties = new Properties(); //kafka的broker地址 properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); String topic = "test006"; FlinkKafkaProducer<Tuple2<String, Integer>> producer = new FlinkKafkaProducer<>(topic, new ObjSerializationSchema(topic), properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE); //创立一个List,外面有两个Tuple2元素 List<Tuple2<String, Integer>> list = new ArrayList<>(); list.add(new Tuple2("aaa", 1)); list.add(new Tuple2("bbb", 1)); list.add(new Tuple2("ccc", 1)); list.add(new Tuple2("ddd", 1)); list.add(new Tuple2("eee", 1)); list.add(new Tuple2("fff", 1)); list.add(new Tuple2("aaa", 1)); //统计每个单词的数量 env.fromCollection(list) .keyBy(0) .sum(1) .addSink(producer) .setParallelism(4); env.execute("sink demo : kafka obj"); }}
- 像前一个工作那样编译构建,把jar提交到flink,并指定执行类是<font color="blue">com.bolingcavalry.addsink.KafkaObjSink</font>;
- 生产kafka音讯的控制台输入如下:
- 在web页面可见执行状况如下:
至此,flink将计算结果作为kafka音讯发送进来的实战就实现了,心愿能给您提供参考,接下来的章节,咱们会持续体验官网提供的sink能力;
欢送关注公众号:程序员欣宸
微信搜寻「程序员欣宸」,我是欣宸,期待与您一起畅游Java世界...
https://github.com/zq2599/blog_demos