欢送拜访我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,波及Java、Docker、Kubernetes、DevOPS等;
本篇概览
本文是《Flink的DataSource三部曲》系列的第二篇,上一篇《Flink的DataSource三部曲之一:间接API》学习了StreamExecutionEnvironment的API创立DataSource,明天要练习的是Flink内置的connector,即下图的红框地位,这些connector能够通过StreamExecutionEnvironment的addSource办法应用:
明天的实战抉择Kafka作为数据源来操作,先尝试接管和解决String型的音讯,再接管JSON类型的音讯,将JSON反序列化成bean实例;
Flink的DataSource三部曲文章链接
- 《Flink的DataSource三部曲之一:间接API》
- 《Flink的DataSource三部曲之二:内置connector》
- 《Flink的DataSource三部曲之三:自定义》
源码下载
如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blo...:
名称 | 链接 | 备注 |
---|---|---|
我的项目主页 | https://github.com/zq2599/blo... | 该我的项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blo... | 该我的项目源码的仓库地址,https协定 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该我的项目源码的仓库地址,ssh协定 |
这个git我的项目中有多个文件夹,本章的利用在<font color="blue">flinkdatasourcedemo</font>文件夹下,如下图红框所示:
环境和版本
本次实战的环境和版本如下:
- JDK:1.8.0_211
- Flink:1.9.2
- Maven:3.6.0
- 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
- IDEA:2018.3.5 (Ultimate Edition)
- Kafka:2.4.0
- Zookeeper:3.5.5
请确保上述内容都曾经准备就绪,能力持续前面的实战;
Flink与Kafka版本匹配
- Flink官网对匹配Kafka版本做了具体阐明,地址是:https://ci.apache.org/project...
- 要重点关注的是官网提到的通用版(universal Kafka connector ),这是从Flink1.7开始推出的,对于Kafka1.0.0或者更高版本都能够应用:
- 下图红框中是我的工程中要依赖的库,蓝框中是连贯Kafka用到的类,读者您能够依据本人的Kafka版本在表格中找到适宜的库和类:
实战字符串音讯解决
- 在kafka上创立名为test001的topic,参考命令:
./kafka-topics.sh \--create \--zookeeper 192.168.50.43:2181 \--replication-factor 1 \--partitions 2 \--topic test001
- 持续应用上一章创立的flinkdatasourcedemo工程,关上pom.xml文件减少以下依赖:
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>1.10.0</version></dependency>
- 新增类Kafka240String.java,作用是连贯broker,对收到的字符串音讯做WordCount操作:
package com.bolingcavalry.connector;import com.bolingcavalry.Splitter;import org.apache.flink.api.common.serialization.SimpleStringSchema;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import java.util.Properties;import static com.sun.tools.doclint.Entity.para;public class Kafka240String { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(2); Properties properties = new Properties(); //broker地址 properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); //zookeeper地址 properties.setProperty("zookeeper.connect", "192.168.50.43:2181"); //消费者的groupId properties.setProperty("group.id", "flink-connector"); //实例化Consumer类 FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>( "test001", new SimpleStringSchema(), properties ); //指定从最新地位开始生产,相当于放弃历史音讯 flinkKafkaConsumer.setStartFromLatest(); //通过addSource办法失去DataSource DataStream<String> dataStream = env.addSource(flinkKafkaConsumer); //从kafka获得字符串音讯后,宰割成单词,统计数量,窗口是5秒 dataStream .flatMap(new Splitter()) .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1) .print(); env.execute("Connector DataSource demo : kafka"); }}
- 确保kafka的topic曾经创立,将Kafka240运行起来,可见生产音讯并进行单词统计的性能是失常的:
- 接管kafka字符串音讯的实战曾经实现,接下来试试JSON格局的音讯;
实战JSON音讯解决
- 接下来要承受的JSON格局音讯,能够被反序列化成bean实例,会用到JSON库,我抉择的是gson;
- 在pom.xml减少gson依赖:
<dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.8.5</version></dependency>
- 减少类Student.java,这是个一般的Bean,只有id和name两个字段:
package com.bolingcavalry;public class Student { private int id; private String name; public int getId() { return id; } public void setId(int id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; }}
- 减少类StudentSchema.java,该类是DeserializationSchema接口的实现,将JSON反序列化成Student实例时用到:
ackage com.bolingcavalry.connector;import com.bolingcavalry.Student;import com.google.gson.Gson;import org.apache.flink.api.common.serialization.DeserializationSchema;import org.apache.flink.api.common.serialization.SerializationSchema;import org.apache.flink.api.common.typeinfo.TypeInformation;import java.io.IOException;public class StudentSchema implements DeserializationSchema<Student>, SerializationSchema<Student> { private static final Gson gson = new Gson(); /** * 反序列化,将byte数组转成Student实例 * @param bytes * @return * @throws IOException */ @Override public Student deserialize(byte[] bytes) throws IOException { return gson.fromJson(new String(bytes), Student.class); } @Override public boolean isEndOfStream(Student student) { return false; } /** * 序列化,将Student实例转成byte数组 * @param student * @return */ @Override public byte[] serialize(Student student) { return new byte[0]; } @Override public TypeInformation<Student> getProducedType() { return TypeInformation.of(Student.class); }}
- 新增类Kafka240Bean.java,作用是连贯broker,对收到的JSON音讯转成Student实例,统计每个名字呈现的数量,窗口仍旧是5秒:
package com.bolingcavalry.connector;import com.bolingcavalry.Splitter;import com.bolingcavalry.Student;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.api.common.serialization.SimpleStringSchema;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import java.util.Properties;public class Kafka240Bean { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(2); Properties properties = new Properties(); //broker地址 properties.setProperty("bootstrap.servers", "192.168.50.43:9092"); //zookeeper地址 properties.setProperty("zookeeper.connect", "192.168.50.43:2181"); //消费者的groupId properties.setProperty("group.id", "flink-connector"); //实例化Consumer类 FlinkKafkaConsumer<Student> flinkKafkaConsumer = new FlinkKafkaConsumer<>( "test001", new StudentSchema(), properties ); //指定从最新地位开始生产,相当于放弃历史音讯 flinkKafkaConsumer.setStartFromLatest(); //通过addSource办法失去DataSource DataStream<Student> dataStream = env.addSource(flinkKafkaConsumer); //从kafka获得的JSON被反序列化成Student实例,统计每个name的数量,窗口是5秒 dataStream.map(new MapFunction<Student, Tuple2<String, Integer>>() { @Override public Tuple2<String, Integer> map(Student student) throws Exception { return new Tuple2<>(student.getName(), 1); } }) .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1) .print(); env.execute("Connector DataSource demo : kafka bean"); }}
- 在测试的时候,要向kafka发送JSON格局字符串,flink这边就会给统计出每个name的数量:
至此,内置connector的实战就实现了,接下来的章节,咱们将要一起实战自定义DataSource;
欢送关注公众号:程序员欣宸
微信搜寻「程序员欣宸」,我是欣宸,期待与您一起畅游Java世界...
https://github.com/zq2599/blog_demos