Hadoop介绍
Hadoop-大数据开源世界的亚当夏娃。
外围是HDFS数据存储系统,和MapReduce分布式计算框架。
HDFS
原理是把大块数据切碎,
每个碎块复制三份,离开放在三个便宜机上,始终放弃有三块可用的数据互为备份。应用的时候只从其中一个备份读出来,这个碎块数据就有了。
存数据的叫datenode(格子间),治理datenode的叫namenode(执伞人)。
MapReduce
原理是大工作先分堆解决-Map,再汇总处理结果-Reduce。分和汇是多台服务器并行进行,能力体现集群的威力。难度在于如何把工作拆解成合乎MapReduce模型的分和汇,以及两头过程的输入输出<k,v> 都是什么。
单机版Hadoop介绍
对于学习hadoop原理和hadoop开发的人来说,搭建一套hadoop零碎是必须的。但
- 配置该零碎是十分头疼的,很多人配置过程就放弃了。
- 没有服务器供你应用
这里介绍一种免配置的单机版hadoop装置应用办法,能够简略疾速的跑一跑hadoop例子辅助学习、开发和测试。
要求笔记本上装了Linux虚拟机,虚拟机上装了docker。
装置
应用docker下载sequenceiq/hadoop-docker:2.7.0镜像并运行。
[root@bogon ~]# docker pull sequenceiq/hadoop-docker:2.7.0 2.7.0: Pulling from sequenceiq/hadoop-docker860d0823bcab: Pulling fs layer e592c61b2522: Pulling fs layer
下载胜利输入
Digest: sha256:a40761746eca036fee6aafdf9fdbd6878ac3dd9a7cd83c0f3f5d8a0e6350c76aStatus: Downloaded newer image for sequenceiq/hadoop-docker:2.7.0
启动
[root@bogon ~]# docker run -it sequenceiq/hadoop-docker:2.7.0 /etc/bootstrap.sh -bash --privileged=trueStarting sshd: [ OK ]Starting namenodes on [b7a42f79339c]b7a42f79339c: starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-namenode-b7a42f79339c.outlocalhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-b7a42f79339c.outStarting secondary namenodes [0.0.0.0]0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-root-secondarynamenode-b7a42f79339c.outstarting yarn daemonsstarting resourcemanager, logging to /usr/local/hadoop/logs/yarn--resourcemanager-b7a42f79339c.outlocalhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-b7a42f79339c.out
启动胜利后命令行shell会主动进入Hadoop的容器环境,不须要执行docker exec。在容器环境进入/usr/local/hadoop/sbin,执行./start-all.sh和./mr-jobhistory-daemon.sh start historyserver,如下
bash-4.1# cd /usr/local/hadoop/sbinbash-4.1# ./start-all.shThis script is Deprecated. Instead use start-dfs.sh and start-yarn.shStarting namenodes on [b7a42f79339c]b7a42f79339c: namenode running as process 128. Stop it first.localhost: datanode running as process 219. Stop it first.Starting secondary namenodes [0.0.0.0]0.0.0.0: secondarynamenode running as process 402. Stop it first.starting yarn daemonsresourcemanager running as process 547. Stop it first.localhost: nodemanager running as process 641. Stop it first. bash-4.1# ./mr-jobhistory-daemon.sh start historyserverchown: missing operand after `/usr/local/hadoop/logs'Try `chown --help' for more information.starting historyserver, logging to /usr/local/hadoop/logs/mapred--historyserver-b7a42f79339c.out
Hadoop启动实现,如此简略。
要问分布式部署有多麻烦,数数光配置文件就有多少个吧!我亲眼见过一个hadoop老鸟,因为新换的服务器hostname主机名带横线“-”,配了一上午,环境硬是没起来。
运行自带的例子
回到Hadoop主目录,运行示例程序
bash-4.1# cd /usr/local/hadoopbash-4.1# bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep input output 'dfs[a-z.]+' 20/07/05 22:34:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:803220/07/05 22:34:43 INFO input.FileInputFormat: Total input paths to process : 3120/07/05 22:34:43 INFO mapreduce.JobSubmitter: number of splits:3120/07/05 22:34:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1594002714328_000120/07/05 22:34:44 INFO impl.YarnClientImpl: Submitted application application_1594002714328_000120/07/05 22:34:45 INFO mapreduce.Job: The url to track the job: http://b7a42f79339c:8088/proxy/application_1594002714328_0001/20/07/05 22:34:45 INFO mapreduce.Job: Running job: job_1594002714328_000120/07/05 22:35:04 INFO mapreduce.Job: Job job_1594002714328_0001 running in uber mode : false20/07/05 22:35:04 INFO mapreduce.Job: map 0% reduce 0%20/07/05 22:37:59 INFO mapreduce.Job: map 11% reduce 0%20/07/05 22:38:05 INFO mapreduce.Job: map 12% reduce 0%
mapreduce计算实现,有如下输入
20/07/05 22:55:26 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=291 FILE: Number of bytes written=230541 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=569 HDFS: Number of bytes written=197 HDFS: Number of read operations=7 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=5929 Total time spent by all reduces in occupied slots (ms)=8545 Total time spent by all map tasks (ms)=5929 Total time spent by all reduce tasks (ms)=8545 Total vcore-seconds taken by all map tasks=5929 Total vcore-seconds taken by all reduce tasks=8545 Total megabyte-seconds taken by all map tasks=6071296 Total megabyte-seconds taken by all reduce tasks=8750080 Map-Reduce Framework Map input records=11 Map output records=11 Map output bytes=263 Map output materialized bytes=291 Input split bytes=132 Combine input records=0 Combine output records=0 Reduce input groups=5 Reduce shuffle bytes=291 Reduce input records=11 Reduce output records=11 Spilled Records=22 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=159 CPU time spent (ms)=1280 Physical memory (bytes) snapshot=303452160 Virtual memory (bytes) snapshot=1291390976 Total committed heap usage (bytes)=136450048 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=437 File Output Format Counters Bytes Written=197
hdfs命令查看输入后果
bash-4.1# bin/hdfs dfs -cat output/*6 dfs.audit.logger4 dfs.class3 dfs.server.namenode.2 dfs.period2 dfs.audit.log.maxfilesize2 dfs.audit.log.maxbackupindex1 dfsmetrics.log1 dfsadmin1 dfs.servers1 dfs.replication1 dfs.file
例子解说
grep是一个在输出中计算正则表达式匹配的mapreduce程序,筛选出合乎正则的字符串以及呈现次数。
shell的grep后果会显示残缺的一行,这个命令只显示行中匹配的那个字符串
grep input output 'dfs[a-z.]+'
正则表达式dfs[a-z.]+,示意字符串要以dfs结尾,前面是小写字母或者换行符n之外的任意单个字符都能够,数量一个或者多个。
输出是input里的所有文件,
bash-4.1# ls -lrttotal 48-rw-r--r--. 1 root root 690 May 16 2015 yarn-site.xml-rw-r--r--. 1 root root 5511 May 16 2015 kms-site.xml-rw-r--r--. 1 root root 3518 May 16 2015 kms-acls.xml-rw-r--r--. 1 root root 620 May 16 2015 httpfs-site.xml-rw-r--r--. 1 root root 775 May 16 2015 hdfs-site.xml-rw-r--r--. 1 root root 9683 May 16 2015 hadoop-policy.xml-rw-r--r--. 1 root root 774 May 16 2015 core-site.xml-rw-r--r--. 1 root root 4436 May 16 2015 capacity-scheduler.xml
后果输入到output。
计算流程如下
稍有不同的是这里有两次reduce,第二次reduce就是把后果依照呈现次数排个序。map和reduce流程开发者本人随便组合,只有各流程的输入输出能连接上就行。
管理系统介绍
Hadoop提供了web界面的管理系统,
端口号 | 用处 |
---|---|
50070 | Hadoop Namenode UI端口 |
50075 | Hadoop Datanode UI端口 |
50090 | Hadoop SecondaryNamenode 端口 |
50030 | JobTracker监控端口 |
50060 | TaskTrackers端口 |
8088 | Yarn工作监控端口 |
60010 | Hbase HMaster监控UI端口 |
60030 | Hbase HRegionServer端口 |
8080 | Spark监控UI端口 |
4040 | Spark工作UI端口 |
加命令参数
docker run命令要退出参数,能力拜访UI治理页面
docker run -it -p 50070:50070 -p 8088:8088 -p 50075:50075 sequenceiq/hadoop-docker:2.7.0 /etc/bootstrap.sh -bash --privileged=true
执行这条命令后在宿主机浏览器就能够查看零碎了,当然如果Linux有浏览器也能够查看。我的Linux没有图形界面,所以在宿主机查看。
50070 Hadoop Namenode UI端口
50075 Hadoop Datanode UI端口
8088 Yarn工作监控端口
已实现和正在运行的mapreduce工作都能够在8088里查看,上图有gerp和wordcount两个工作。
一些问题
一、./sbin/mr-jobhistory-daemon.sh start historyserver必须执行,否则运行工作过程中会报
20/06/29 21:18:49 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:10020. Already tried 9 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)java.io.IOException: java.net.ConnectException: Call From 87a4217b9f8a/172.17.0.1 to 0.0.0.0:10020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
二、./start-all.sh必须执行否则报形如
Unknown Job job_1592960164748_0001谬误
三、docker run命令前面必须加--privileged=true,否则运行工作过程中会报java.io.IOException: Job status not available
四、留神,Hadoop 默认不会笼罩后果文件,因而再次运行下面实例会提醒出错,须要先将 ./output 删除。或者换成output01试试?
总结
本文办法能够低成本的实现Hadoop的装置配置,对于学习了解和开发测试都有帮忙的。如果开发本人的Hadoop程序,须要将程序打jar包上传到share/hadoop/mapreduce/目录,执行
bin/hadoop jar share/hadoop/mapreduce/yourtest.jar
来运行程序察看成果。