需要形容

深度学习模型在Android挪动端部署的时候,对于采集到的的摄像头画面须要放弃宽高比的将Bitmap缩放到模型输出的大小,缩放后较指标尺寸像素缺失的局部采纳灰度填充形式, 以避免指标产生显著形变影响辨认成果。在本例中,深度模型是以MobileNetV2为Backbone网络的YOLOv3,并基于MNN挪动端推理框架部署。其中模型输出图像的尺寸大小为(320,320)。

实现

public static Bitmap scaleImage(Bitmap bm, int newWidth, int newHeight){    if (bm == null) {        return null;    }    int width = bm.getWidth();    int height = bm.getHeight();    float scaleWidth = ((float) newWidth) / width;    float scaleHeight = ((float) newHeight) / height;        // 放弃宽高比缩放,以长边为主    float scaleRatio = Math.min(scaleHeight, scaleWidth);    Matrix matrix = new Matrix();    matrix.postScale(scaleRatio, scaleRatio);    Bitmap newBm = Bitmap.createBitmap(bm, 0, 0, width, height, matrix, true);        // 创立指标大小Bitmap    Bitmap scaledImage = Bitmap.createBitmap(newWidth, newHeight, Bitmap.Config.ARGB_8888);    Canvas canvas = new Canvas(scaledImage);        // 绘制背景色彩    Paint paint = new Paint();    paint.setColor(Color.GRAY);    paint.setStyle(Paint.Style.FILL);    canvas.drawRect(0, 0, canvas.getWidth(),    canvas.getHeight(), paint);        // 确定画面地位    float left = 0;    float top = 0;    if (width > height){        top = (float)((newBm.getWidth() - newBm.getHeight()) / 2.0);    }    else{        left = (float)((newBm.getHeight() - newBm.getWidth()) / 2.0);    }    canvas.drawBitmap( newBm, left , top, null );    if (!bm.isRecycled()){            bm.recycle();    }    return scaledImage;}

成果

摄像头捕捉到的原始画面Bitmap:

放弃宽高比缩放后的画面Bitmap: