本文和大家一起刨析 Spring 事务的相干源码,篇幅较长,代码片段较多,倡议应用电脑浏览
本文指标
- 了解Spring事务管理外围接口
- 了解Spring事务管理的外围逻辑
- 了解事务的流传类型及其实现原理
版本
SpringBoot 2.3.3.RELEASE
什么是事务的流传?
Spring 除了封装了事务管制之外,还形象出了 事务的流传 这个概念,事务的流传并不是关系型数据库所定义的,而是Spring在封装事务时做的加强扩大,能够通过@Transactional
指定事务的流传,具体类型如下
事务流传行为类型 | 阐明 |
---|---|
PROPAGATION_REQUIRED | 如果以后没有事务,就新建一个事务,如果曾经存在一个事务中,退出到这个事务中。Spring的默认事务流传类型 |
PROPAGATION_SUPPORTS | 反对以后事务,如果以后没有事务,就以非事务形式执行。 |
PROPAGATION_MANDATORY | 应用以后的事务,如果以后没有事务,就抛出异样。 |
PROPAGATION_REQUIRES_NEW | 新建事务,如果以后存在事务,把以后事务挂起(暂停)。 |
PROPAGATION_NOT_SUPPORTED | 以非事务形式执行操作,如果以后存在事务,就把以后事务挂起。 |
PROPAGATION_NEVER | 以非事务形式执行,如果以后存在事务,则抛出异样。 |
PROPAGATION_NESTED | 如果以后存在事务,则在嵌套事务内执行。如果以后没有事务,则执行与PROPAGATION_REQUIRED相似的操作。 |
举个栗子
以嵌套事务为例
@Servicepublic class DemoServiceImpl implements DemoService { @Autowired private JdbcTemplate jdbcTemplate; @Autowired private DemoServiceImpl self; @Transactional @Override public void insertDB() { String sql = "INSERT INTO sys_user(`id`, `username`) VALUES (?, ?)"; jdbcTemplate.update(sql, uuid(), "taven"); try { // 内嵌事务将会回滚,而内部事务不会受到影响 self.nested(); } catch (Exception e) { e.printStackTrace(); } } @Transactional(propagation = Propagation.NESTED) @Override public void nested() { String sql = "INSERT INTO sys_user(`id`, `username`) VALUES (?, ?)"; jdbcTemplate.update(sql, uuid(), "nested"); throw new RuntimeException("rollback nested"); } private String uuid() { return UUID.randomUUID().toString(); }}
上述代码中,nested()办法标记了事务流传类型为嵌套,如果nested()
中抛出异样仅会回滚nested()
办法中的sql,不会影响到insertDB()
办法中曾经执行的sql
留神:service 调用外部办法时,如果间接应用this调用,事务不会失效。因而应用this调用相当于跳过了内部的代理类,所以AOP不会失效,无奈应用事务
思考
家喻户晓,Spring 事务是通过AOP实现的,如果是咱们本人写一个AOP管制事务,该怎么做呢?
// 伪代码public Object invokeWithinTransaction() { // 开启事务 connection.beginTransaction(); try { // 反射执行办法 Object result = invoke(); // 提交事务 connection.commit(); return result; } catch(Exception e) { // 产生异样时回滚 connection.rollback(); throw e; } }
在这个根底上,咱们来思考一下如果是咱们本人做的话,事务的流传该如何实现
以PROPAGATION_REQUIRED
为例,这个仿佛很简略,咱们判断一下以后是否有事务(能够思考应用ThreadLocal存储已存在的事务对象),如果有事务,那么就不开启新的事务。反之,没有事务,咱们就创立新的事务
如果事务是由以后切面开启的,则提交/回滚事务,反之不做解决
那么事务流传中形容的挂起(暂停)以后事务,和内嵌事务是如何实现的?
<!--
这里提前剧透一下,内嵌事务是应用关系型数据库的savepoint实现的
-->
源码动手
要浏览事务流传相干的源码,咱们先来理解下Spring 事务管理的外围接口与类
- TransactionDefinition
该接口定义了事务的所有属性(隔离级别,流传类型,超时工夫等等),咱们日常开发中常常应用的 @Transactional
其实最终会被转化为 TransactionDefinition
- TransactionStatus
事务的状态,以最罕用的实现 DefaultTransactionStatus 为例,该类存储了以后的事务对象,savepoint,以后挂起的事务,是否实现,是否仅回滚等等
- TransactionManager
这是一个空接口,间接继承他的 interface 有 PlatformTransactionManager(咱们平时用的就是这个,默认的实现类DataSourceTransactionManager)以及
ReactiveTransactionManager(响应式事务管理器,因为不是本文重点,咱们不多说)
从上述两个接口来看,TransactionManager 的次要作用
- 通过TransactionDefinition开启一个事务,返回TransactionStatus
- 通过TransactionStatus 提交、回滚事务(理论开启事务的Connection通常存储在TransactionStatus中)
public interface PlatformTransactionManager extends TransactionManager { TransactionStatus getTransaction(@Nullable TransactionDefinition definition) throws TransactionException; void commit(TransactionStatus status) throws TransactionException; void rollback(TransactionStatus status) throws TransactionException;}
- TransactionInterceptor
事务拦截器,事务AOP的外围类(反对响应式事务,编程式事务,以及咱们罕用的规范事务),因为篇幅起因,本文只探讨规范事务的相干实现
上面咱们从事务逻辑的入口 TransactionInterceptor 动手,来看下Spring事务管理的外围逻辑以及事务流传的实现
TransactionInterceptor
TransactionInterceptor 实现了MethodInvocation(这是实现AOP的一种形式),其外围逻辑在父类TransactionAspectSupport 中,办法地位:TransactionInterceptor::invokeWithinTransaction
protected Object invokeWithinTransaction(Method method, @Nullable Class<?> targetClass, final InvocationCallback invocation) throws Throwable { // If the transaction attribute is null, the method is non-transactional. TransactionAttributeSource tas = getTransactionAttributeSource(); // 以后事务的属性 TransactionAttribute extends TransactionDefinition final TransactionAttribute txAttr = (tas != null ? tas.getTransactionAttribute(method, targetClass) : null); // 事务属性中能够定义以后应用哪个事务管理器 // 如果没有定义就去Spring上下文找到一个可用的 TransactionManager final TransactionManager tm = determineTransactionManager(txAttr); // 省略了响应式事务的解决 ... PlatformTransactionManager ptm = asPlatformTransactionManager(tm); final String joinpointIdentification = methodIdentification(method, targetClass, txAttr); if (txAttr == null || !(ptm instanceof CallbackPreferringPlatformTransactionManager)) { // Standard transaction demarcation with getTransaction and commit/rollback calls. TransactionInfo txInfo = createTransactionIfNecessary(ptm, txAttr, joinpointIdentification); Object retVal; try { // This is an around advice: Invoke the next interceptor in the chain. // This will normally result in a target object being invoked. // 如果有下一个拦截器则执行,最终会执行到指标办法,也就是咱们的业务代码 retVal = invocation.proceedWithInvocation(); } catch (Throwable ex) { // target invocation exception // 当捕捉到异样时实现以后事务 (提交或者回滚) completeTransactionAfterThrowing(txInfo, ex); throw ex; } finally { cleanupTransactionInfo(txInfo); } if (retVal != null && vavrPresent && VavrDelegate.isVavrTry(retVal)) { // Set rollback-only in case of Vavr failure matching our rollback rules... TransactionStatus status = txInfo.getTransactionStatus(); if (status != null && txAttr != null) { retVal = VavrDelegate.evaluateTryFailure(retVal, txAttr, status); } } // 依据事务的状态提交或者回滚 commitTransactionAfterReturning(txInfo); return retVal; } // 省略了编程式事务的解决 ... }
这里代码很多,依据正文的地位,咱们能够把外围逻辑梳理进去
- 获取以后事务属性,事务管理器(以注解事务为例,这些都能够通过
@Transactional
来定义) createTransactionIfNecessary
,判断是否有必要创立事务invocation.proceedWithInvocation
执行拦截器链,最终会执行到指标办法completeTransactionAfterThrowing
当抛出异样后,实现这个事务,提交或者回滚,并抛出这个异样commitTransactionAfterReturning
从办法命名来看,这个办法会提交事务。
然而深刻源码中会发现,该办法中也蕴含回滚逻辑,具体行为会依据以后TransactionStatus的一些状态来决定(也就是说,咱们也能够通过设置以后TransactionStatus,来管制事务回滚,并不一定只能通过抛出异样),详见AbstractPlatformTransactionManager::commit
<!--
业务代码中能够通过TransactionAspectSupport.currentTransactionStatus()
获取以后TransactionStatus
-->
咱们持续,来看看createTransactionIfNecessary做了什么
TransactionAspectSupport::createTransactionIfNecessary
protected TransactionInfo createTransactionIfNecessary(@Nullable PlatformTransactionManager tm, @Nullable TransactionAttribute txAttr, final String joinpointIdentification) { // If no name specified, apply method identification as transaction name. if (txAttr != null && txAttr.getName() == null) { txAttr = new DelegatingTransactionAttribute(txAttr) { @Override public String getName() { return joinpointIdentification; } }; } TransactionStatus status = null; if (txAttr != null) { if (tm != null) { // 通过事务管理器开启事务 status = tm.getTransaction(txAttr); } else { if (logger.isDebugEnabled()) { logger.debug("Skipping transactional joinpoint [" + joinpointIdentification + "] because no transaction manager has been configured"); } } } return prepareTransactionInfo(tm, txAttr, joinpointIdentification, status); }
createTransactionIfNecessary中的外围逻辑
- 通过PlatformTransactionManager(事务管理器)开启事务
prepareTransactionInfo
筹备事务信息,这个具体做了什么咱们稍后再讲
持续来看PlatformTransactionManager::getTransaction
,该办法只有一个实现 AbstractPlatformTransactionManager::getTransaction
public final TransactionStatus getTransaction(@Nullable TransactionDefinition definition) throws TransactionException { // Use defaults if no transaction definition given. TransactionDefinition def = (definition != null ? definition : TransactionDefinition.withDefaults()); // 获取以后事务,该办法有继承 AbstractPlatformTransactionManager 的子类自行实现 Object transaction = doGetTransaction(); boolean debugEnabled = logger.isDebugEnabled(); // 如果目前存在事务 if (isExistingTransaction(transaction)) { // Existing transaction found -> check propagation behavior to find out how to behave. return handleExistingTransaction(def, transaction, debugEnabled); } // Check definition settings for new transaction. if (def.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) { throw new InvalidTimeoutException("Invalid transaction timeout", def.getTimeout()); } // 流传类型PROPAGATION_MANDATORY, 要求以后必须有事务 // No existing transaction found -> check propagation behavior to find out how to proceed. if (def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) { throw new IllegalTransactionStateException( "No existing transaction found for transaction marked with propagation 'mandatory'"); } // PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, PROPAGATION_NESTED 不存在事务时创立事务 else if (def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED || def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW || def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) { SuspendedResourcesHolder suspendedResources = suspend(null); if (debugEnabled) { logger.debug("Creating new transaction with name [" + def.getName() + "]: " + def); } try { // 开启事务 return startTransaction(def, transaction, debugEnabled, suspendedResources); } catch (RuntimeException | Error ex) { resume(null, suspendedResources); throw ex; } } else { // Create "empty" transaction: no actual transaction, but potentially synchronization. if (def.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT && logger.isWarnEnabled()) { logger.warn("Custom isolation level specified but no actual transaction initiated; " + "isolation level will effectively be ignored: " + def); } boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS); return prepareTransactionStatus(def, null, true, newSynchronization, debugEnabled, null); } }
代码很多,重点关注正文局部即可
doGetTransaction
获取以后事务- 如果存在事务,则调用
handleExistingTransaction
解决,这个咱们稍后会讲到
接下来,会依据事务的流传决定是否开启事务
- 如果事务流传类型为
PROPAGATION_MANDATORY
,且不存在事务,则抛出异样 - 如果流传类型为
PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, PROPAGATION_NESTED
,且以后不存在事务,则调用startTransaction
创立事务 - 当不满足 3、4时,例如
PROPAGATION_NOT_SUPPORTED
,此时会执行事务同步,然而不会创立真正的事务
Spring 事务同步在之前一篇博客中有讲到,传送门????https://www.jianshu.com/p/788...
Spring 如何治理以后的事务
接下来讲讲下面提到的doGetTransaction
、handleExistingTransaction
,这两个办法是由不同的TransactionManager自行实现的
咱们以SpringBoot默认的TransactionManager,DataSourceTransactionManager为例
@Override protected Object doGetTransaction() { DataSourceTransactionObject txObject = new DataSourceTransactionObject(); txObject.setSavepointAllowed(isNestedTransactionAllowed()); ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(obtainDataSource()); txObject.setConnectionHolder(conHolder, false); return txObject; } @Override protected boolean isExistingTransaction(Object transaction) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction; return (txObject.hasConnectionHolder() && txObject.getConnectionHolder().isTransactionActive()); }
联合 AbstractPlatformTransactionManager::getTransaction
一起来看,doGetTransaction
其实获取的是以后的Connection。
判断以后是否存在事务,是判断DataSourceTransactionObject 对象中是否蕴含connection,以及connection是否开启了事务。
咱们持续来看下TransactionSynchronizationManager.getResource(obtainDataSource())
获取以后connection的逻辑
TransactionSynchronizationManager::getResource
private static final ThreadLocal<Map<Object, Object>> resources = new NamedThreadLocal<>("Transactional resources"); @Nullable // TransactionSynchronizationManager::getResource public static Object getResource(Object key) { // DataSourceTransactionManager 调用该办法时,以数据源作为key // TransactionSynchronizationUtils::unwrapResourceIfNecessary 如果key为包装类,则获取被包装的对象 // 咱们能够疏忽该逻辑 Object actualKey = TransactionSynchronizationUtils.unwrapResourceIfNecessary(key); Object value = doGetResource(actualKey); if (value != null && logger.isTraceEnabled()) { logger.trace("Retrieved value [" + value + "] for key [" + actualKey + "] bound to thread [" + Thread.currentThread().getName() + "]"); } return value; } /** * Actually check the value of the resource that is bound for the given key. */ @Nullable private static Object doGetResource(Object actualKey) { Map<Object, Object> map = resources.get(); if (map == null) { return null; } Object value = map.get(actualKey); // Transparently remove ResourceHolder that was marked as void... if (value instanceof ResourceHolder && ((ResourceHolder) value).isVoid()) { map.remove(actualKey); // Remove entire ThreadLocal if empty... if (map.isEmpty()) { resources.remove(); } value = null; } return value; }
看到这里,咱们能明确DataSourceTransactionManager是如何治理线程之间的Connection,ThreadLocal 中存储一个Map,key为数据源对象,value为该数据源在以后线程的Connection
DataSourceTransactionManager 在开启事务后,会调用TransactionSynchronizationManager::bindResource
将指定数据源的Connection绑定到以后线程
AbstractPlatformTransactionManager::handleExistingTransaction
咱们持续回头看,如果存在事务的状况,如何解决
private TransactionStatus handleExistingTransaction( TransactionDefinition definition, Object transaction, boolean debugEnabled) throws TransactionException { // 如果事务的流传要求以非事务形式执行 抛出异样 if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NEVER) { throw new IllegalTransactionStateException( "Existing transaction found for transaction marked with propagation 'never'"); } // PROPAGATION_NOT_SUPPORTED 如果存在事务,则挂起以后事务,以非事务形式执行 if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NOT_SUPPORTED) { if (debugEnabled) { logger.debug("Suspending current transaction"); } // 挂起以后事务 Object suspendedResources = suspend(transaction); boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS); // 构建一个无事务的TransactionStatus return prepareTransactionStatus( definition, null, false, newSynchronization, debugEnabled, suspendedResources); } // PROPAGATION_REQUIRES_NEW 如果存在事务,则挂起以后事务,新建一个事务 if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW) { if (debugEnabled) { logger.debug("Suspending current transaction, creating new transaction with name [" + definition.getName() + "]"); } SuspendedResourcesHolder suspendedResources = suspend(transaction); try { return startTransaction(definition, transaction, debugEnabled, suspendedResources); } catch (RuntimeException | Error beginEx) { resumeAfterBeginException(transaction, suspendedResources, beginEx); throw beginEx; } } // PROPAGATION_NESTED 内嵌事务,就是咱们结尾举得例子 if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) { if (!isNestedTransactionAllowed()) { throw new NestedTransactionNotSupportedException( "Transaction manager does not allow nested transactions by default - " + "specify 'nestedTransactionAllowed' property with value 'true'"); } if (debugEnabled) { logger.debug("Creating nested transaction with name [" + definition.getName() + "]"); } // 非JTA事务管理器都是通过savePoint实现的内嵌事务 // savePoint:关系型数据库中事务能够创立还原点,并且能够回滚到还原点 if (useSavepointForNestedTransaction()) { // Create savepoint within existing Spring-managed transaction, // through the SavepointManager API implemented by TransactionStatus. // Usually uses JDBC 3.0 savepoints. Never activates Spring synchronization. DefaultTransactionStatus status = prepareTransactionStatus(definition, transaction, false, false, debugEnabled, null); // 创立还原点 status.createAndHoldSavepoint(); return status; } else { // Nested transaction through nested begin and commit/rollback calls. // Usually only for JTA: Spring synchronization might get activated here // in case of a pre-existing JTA transaction. return startTransaction(definition, transaction, debugEnabled, null); } } // 如果执行到这一步流传类型肯定是,PROPAGATION_SUPPORTS 或者 PROPAGATION_REQUIRED // Assumably PROPAGATION_SUPPORTS or PROPAGATION_REQUIRED. if (debugEnabled) { logger.debug("Participating in existing transaction"); } // 校验目前办法中的事务定义和已存在的事务定义是否统一 if (isValidateExistingTransaction()) { if (definition.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT) { Integer currentIsolationLevel = TransactionSynchronizationManager.getCurrentTransactionIsolationLevel(); if (currentIsolationLevel == null || currentIsolationLevel != definition.getIsolationLevel()) { Constants isoConstants = DefaultTransactionDefinition.constants; throw new IllegalTransactionStateException("Participating transaction with definition [" + definition + "] specifies isolation level which is incompatible with existing transaction: " + (currentIsolationLevel != null ? isoConstants.toCode(currentIsolationLevel, DefaultTransactionDefinition.PREFIX_ISOLATION) : "(unknown)")); } } if (!definition.isReadOnly()) { if (TransactionSynchronizationManager.isCurrentTransactionReadOnly()) { throw new IllegalTransactionStateException("Participating transaction with definition [" + definition + "] is not marked as read-only but existing transaction is"); } } } boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER); // 构建一个TransactionStatus,但不开启事务 return prepareTransactionStatus(definition, transaction, false, newSynchronization, debugEnabled, null); }
这里代码很多,逻辑看上述正文即可。这里终于看到了期待已久的挂起事务和内嵌事务了,咱们还是看一下DataSourceTransactionManager的实现
- 挂起事务:通过
TransactionSynchronizationManager::unbindResource
依据数据源获取以后的Connection,并在resource中移除该Connection。之后会将该Connection存储到TransactionStatus对象中
// DataSourceTransactionManager::doSuspend @Override protected Object doSuspend(Object transaction) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction; txObject.setConnectionHolder(null); return TransactionSynchronizationManager.unbindResource(obtainDataSource()); }
在事务提交或者回滚后,调用 AbstractPlatformTransactionManager::cleanupAfterCompletion
会将TransactionStatus 中缓存的Connection从新绑定到resource中
- 内嵌事务:通过关系型数据库的savePoint实现,提交或回滚的时候会判断如果以后事务为savePoint则开释savePoint或者回滚到savePoint,具体逻辑参考
AbstractPlatformTransactionManager::processRollback
和AbstractPlatformTransactionManager::processCommit
至此,事务的流传源码剖析完结
prepareTransactionInfo
上文留下了一个问题,prepareTransactionInfo 办法做了什么,咱们先来看下TransactionInfo
的构造
protected static final class TransactionInfo { @Nullable private final PlatformTransactionManager transactionManager; @Nullable private final TransactionAttribute transactionAttribute; private final String joinpointIdentification; @Nullable private TransactionStatus transactionStatus; @Nullable private TransactionInfo oldTransactionInfo; // ... }
该类在Spring中的作用,是为了外部传递对象。ThreadLocal中存储了最新的TransactionInfo,通过以后TransactionInfo能够找到他的oldTransactionInfo。每次创立事务时会新建一个TransactionInfo(无论有没有真正的事务被创立)存储到ThreadLocal中,在每次事务完结后,会将以后ThreadLocal中的TransactionInfo重置为oldTransactionInfo,这样的构造造成了一个链表,使得Spring事务在逻辑上能够有限嵌套上来
如果感觉有播种,能够关注我的公众号,你的点赞和关注就是对我最大的反对