本文将介绍 YOLOv4 官网 Darknet 实现,如何于 Ubuntu 18.04 编译,及应用 Python 接口。
次要内容有:
- 筹备根底环境: Nvidia Driver, CUDA, cuDNN, CMake, Python
- 编译应用环境: OpenCV, Darknet
- 用预训练模型进行推断:
darknet
执行,或python
而 YOLOv4 的介绍或训练,可见前文《YOLOv4: Darknet 如何于 Docker 编译,及训练 COCO 子集》。
筹备根底环境
Nvidia Driver
举荐应用 graphics drivers PPA 装置 Nvidia 驱动:
sudo add-apt-repository ppa:graphics-drivers/ppasudo apt update
查看举荐的 Nvidia 显卡驱动:
ubuntu-drivers devices
装置 Nvidia 驱动:
apt-cache search nvidia | grep ^nvidia-driversudo apt install nvidia-driver-450
之后, sudo reboot
重启。运行 nvidia-smi
查看 Nvidia 驱动信息。
Nvidia CUDA Toolkit
获取地址:
- CUDA Toolkit Archive: https://developer.nvidia.com/...
倡议抉择 CUDA 10.2 ,为目前 PyTorch 可反对的最新版本。
下载安装:
wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.runsudo sh cuda_10.2.89_440.33.01_linux.run
留神:装置时,请手动勾销驱动装置选项。
装置输入:
============ Summary ============Driver: Not SelectedToolkit: Installed in /usr/local/cuda-10.2/Samples: Installed in /home/john/cuda-10.2/, but missing recommended librariesPlease make sure that - PATH includes /usr/local/cuda-10.2/bin - LD_LIBRARY_PATH includes /usr/local/cuda-10.2/lib64, or, add /usr/local/cuda-10.2/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-10.2/binPlease see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.2/doc/pdf for detailed information on setting up CUDA.***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 440.00 is required for CUDA 10.2 functionality to work.To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file: sudo <CudaInstaller>.run --silent --driverLogfile is /var/log/cuda-installer.log
增加环境变量:
$ vi ~/.bashrcexport CUDA_HOME=/usr/local/cudaexport PATH=$CUDA_HOME/bin:$PATHexport LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
重启终端后,查看:
$ nvcc --versionnvcc: NVIDIA (R) Cuda compiler driverCopyright (c) 2005-2019 NVIDIA CorporationBuilt on Wed_Oct_23_19:24:38_PDT_2019Cuda compilation tools, release 10.2, V10.2.89
Nvida cuDNN
获取地址:
- cuDNN Download: https://developer.nvidia.com/...
需抉择 CUDA 10.2 对应的版本。
装置 deb 包:
sudo apt install ./libcudnn8_8.0.2.39-1+cuda10.2_amd64.debsudo apt install ./libcudnn8-dev_8.0.2.39-1+cuda10.2_amd64.debsudo apt install ./libcudnn8-doc_8.0.2.39-1+cuda10.2_amd64.deb
查看 deb 包:
dpkg -c libcudnn8_8.0.2.39-1+cuda10.2_amd64.deb
CMake
下载安装:
curl -O -L https://github.com/Kitware/CMake/releases/download/v3.18.2/cmake-3.18.2-Linux-x86_64.shsh cmake-*.sh --prefix=$HOME/Applications/
增加环境变量:
$ vi ~/.bashrcexport PATH=$HOME/Applications/cmake-3.18.2-Linux-x86_64/bin:$PATH
阐明: apt 源的 cmake 太旧, darknet 编译不过。
Python
获取地址:
- Anaconda: https://www.anaconda.com/dist...
Python 倡议用 Anaconda 发行版。
装置命令:
# bash Anaconda3-2020.07-Linux-x86_64.shbash Anaconda3-2019.10-Linux-x86_64.sh
编译应用环境
OpenCV 4.4.0
装置依赖:
apt install -y build-essential git libgtk-3-dev
编译命令:
conda deactivate# export CONDA_HOME="/home/john/anaconda3/envs/clenv"export CONDA_HOME=`conda info -s | grep -Po "sys.prefix:s*K[/w]*"`cd ~/Codes/git clone -b 4.4.0 --depth 1 https://github.com/opencv/opencv.gitgit clone -b 4.4.0 --depth 1 https://github.com/opencv/opencv_contrib.gitcd opencv/mkdir _build && cd _build/cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$HOME/opencv-cuda-4.4.0 -DOPENCV_EXTRA_MODULES_PATH=$HOME/Codes/opencv_contrib/modules -DPYTHON_EXECUTABLE=$CONDA_HOME/bin/python3.7 -DPYTHON3_EXECUTABLE=$CONDA_HOME/bin/python3.7 -DPYTHON3_LIBRARY=$CONDA_HOME/lib/libpython3.7m.so -DPYTHON3_INCLUDE_DIR=$CONDA_HOME/include/python3.7m -DPYTHON3_NUMPY_INCLUDE_DIRS=$CONDA_HOME/lib/python3.7/site-packages/numpy/core/include -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=ON -DWITH_CUDA=ON -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_TESTS=OFF ..make -j$(nproc)make install
其中 Python 门路请对应本人装置的版本。
运行查看:
conda activateexport LD_LIBRARY_PATH=$HOME/opencv-cuda-4.4.0/lib:$LD_LIBRARY_PATHexport PYTHONPATH=$HOME/opencv-cuda-4.4.0/lib/python3.7/site-packages:$PYTHONPATHpython - <<EOFimport cv2print(cv2.__version__)EOF
问题: libfontconfig.so.1
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/john/opencv-cuda-4.4.0/lib/python3.7/site-packages/cv2/__init__.py", line 96, in <module> bootstrap() File "/home/john/opencv-cuda-4.4.0/lib/python3.7/site-packages/cv2/__init__.py", line 86, in bootstrap import cv2ImportError: /home/john/anaconda3/bin/../lib/libfontconfig.so.1: undefined symbol: FT_Done_MM_Var
解决办法:
cd $HOME/anaconda3/lib/mv libfontconfig.so.1 libfontconfig.so.1.bakln -s /usr/lib/x86_64-linux-gnu/libfontconfig.so.1 libfontconfig.so.1
问题: libpangoft2-1.0.so.0
ImportError: /home/john/anaconda3/bin/../lib/libpangoft2-1.0.so.0: undefined symbol: FcWeightToOpenTypeDouble
解决办法:
cd $HOME/anaconda3/lib/mv libpangoft2-1.0.so.0 libpangoft2-1.0.so.0.bakln -s /usr/lib/x86_64-linux-gnu/libpangoft2-1.0.so.0 libpangoft2-1.0.so.0
Darknet
编译命令:
export OpenCV_DIR=$HOME/opencv-cuda-4.4.0/lib/cmakecd ~/Codes/git clone https://github.com/AlexeyAB/darknet.gitcd darknet/./build.sh
运行查看:
$ export LD_LIBRARY_PATH=$HOME/opencv-cuda-4.4.0/lib:$LD_LIBRARY_PATH$ ./darknet v CUDA-version: 10020 (10020), cuDNN: 8.0.2, CUDNN_HALF=1, GPU count: 1 CUDNN_HALF=1 OpenCV version: 4.4.0Not an option: v
用预训练模型进行推断
筹备模型与数据
预训练模型 yolov4.weights ,下载地址 https://github.com/AlexeyAB/d... 。
能够筹备 MS COCO 数据集,下载地址 http://cocodataset.org/#download 。或者本人找个图片。
darknet
执行
cd ~/Codes/darknet/export LD_LIBRARY_PATH=$HOME/opencv-cuda-4.4.0/lib:$LD_LIBRARY_PATHexport MY_MODEL_DIR=~/Codes/devel/models/yolov4export MY_COCO_DIR=~/Codes/devel/datasets/coco2017./darknet detector test cfg/coco.data cfg/yolov4.cfg $MY_MODEL_DIR/yolov4.weights -thresh 0.25 -ext_output -show $MY_COCO_DIR/test2017/000000000001.jpg
推断后果:
python
执行
Darknet 于其根目录,提供有 Python 接口。如下执行:
cd ~/Codes/darknet/export LD_LIBRARY_PATH=$HOME/opencv-cuda-4.4.0/lib:$LD_LIBRARY_PATHexport PYTHONPATH=$HOME/opencv-cuda-4.4.0/lib/python3.7/site-packages:$PYTHONPATHpython darknet_images.py -hpython darknet_images.py --batch_size 1 --thresh 0.1 --ext_output --config_file cfg/yolov4.cfg --data_file cfg/coco.data --weights $MY_MODEL_DIR/yolov4.weights --input $MY_COCO_DIR/test2017/000000000001.jpg
推断后果,如前一大节。
结语
Let's go coding ~
分享 Coding 中实用的小技巧、小常识!欢送关注,独特成长!