概述
不论是原生Android、iOS还是JavaScript,只有是波及手势交互都会有事件的散发解决。和原生Android、iOS的事件散发的步骤和原理一样,Flutter的事件散发总体也由手势触发、拦挡和响应等几个局部形成。Flutter所有事件源头是 hooks.dart文件的_dispatchPointerDataPacket函数,通过拦挡屏幕的点击、滑动等各种事件,进而分发给原生代码进行响应(ps:Android事件散发)。
如果你看过理解原生Android、iOS的事件散发机制,那么Flutter的事件散发,其实是在Android和iOS上加了壳,即Flutter的事件散发是在原生Android、iOS的的事件散发上进行包装的(Android - C - Dart,iOS- C -Dart)。其中,C是Flutter的底层engine,负责Flutter下层和原生Android、iOS零碎的交互。
事件散发到Dart的入口类是GestureBinding类,此类位于gestures/binding.dart文件中,与手势辨认相干的都位于gestures包中,如下图所示。
- converter.dart将物理坐标_dispatchPointerDataPacket收到的物理数据PointerDataPacket转换成PointerEvent, 相似于安卓在ViewRootImpl.java将InputEventReceiver收到的InputEvent转换为MotionEvent。
- recognizer.dart的GestureRecognizer是所有手势辨认的基类。
- rendering/binding.dart的RendererBinding类关联了render树和Flutter引擎,等价于安卓的Surface。
- view.dart的RenderView是render树的根节点,等价于安卓的DecorView。
Flutter的事件散发基类是GestureBinding,关上GestureBinding类,它的成员函数包含dispatchEvent、handleEvent和hitTes等,次要是从事件队列里依照先入先出形式解决PointerEvent,源码如下。
mixin GestureBinding on BindingBase implements HitTestable, HitTestDispatcher, HitTestTarget { @override void initInstances() { super.initInstances(); _instance = this; ui.window.onPointerDataPacket = _handlePointerDataPacket; }
其中,WidgetsFlutterBinding.ensureInitialized()函数的作用就是初始化各个binging。
Flutter 事件散发
和Android、iOS相似,Flutter的事件散发的入口在runApp函数,相干的代码如下。
void runApp(Widget app) { WidgetsFlutterBinding.ensureInitialized() ..attachRootWidget(app) ..scheduleWarmUpFrame();}class WidgetsFlutterBinding extends BindingBase with GestureBinding, ServicesBinding, SchedulerBinding, PaintingBinding, SemanticsBinding, RendererBinding, WidgetsBinding { static WidgetsBinding ensureInitialized() { if (WidgetsBinding.instance == null) WidgetsFlutterBinding(); return WidgetsBinding.instance; }} void attachRootWidget(Widget rootWidget) { _renderViewElement = RenderObjectToWidgetAdapter<RenderBox>( container: renderView, debugShortDescription: '[root]', child: rootWidget ).attachToRenderTree(buildOwner, renderViewElement);}
WidgetsFlutterBinding.ensureInitialized()函数的作用是初始化各个binging。事实上,Flutter 中的 WidgetsFlutterBinding的 Binding能够分为GestureBinding、ServicesBinding、SchedulerBinding、PaintingBinding、SemanticsBinding、RendererBinding、WidgetsBinding 等 7 种 Binding,它们都有本人在性能上的划分。其中,GestureBinding就是处理事件散发的,attachRootWidget就是设置根节点, 能够看到真正的根节点是renderview, 也是Flutter事件散发的终点。
上面咱们来重点看一下GestureBinding类。
GestureBinding
和Android事件处理的流程一样,首先,零碎会拦挡用户的事件,而后在应用GestureBinding的_handlePointerEvent进行事件命中解决。原生事件达到Dart层之后调用的第一个办法是_handlePointerDataPacket,它的源码如下。
void _handlePointerDataPacket(ui.PointerDataPacket packet) { _pendingPointerEvents.addAll(PointerEventConverter.expand(packet.data, window.devicePixelRatio)); if (!locked) _flushPointerEventQueue(); }
_handlePointerDataPacket办法有一个PointerEventConverter类,作用是将原生传来的手势数据全副转化为Dart对应的对象保留数据,而后保留到汇合中进行贮存。接下来来咱们看一下_flushPointerEventQueue办法,源码如下。
void _flushPointerEventQueue() { assert(!locked); while (_pendingPointerEvents.isNotEmpty) _handlePointerEvent(_pendingPointerEvents.removeFirst()); }
_flushPointerEventQueue办法的作用就是循环解决每个手指的的事件,并进行解决,源码如下。
void _handlePointerEvent(PointerEvent event) { assert(!locked); HitTestResult hitTestResult; //如果是手指按下的话 if (event is PointerDownEvent || event is PointerSignalEvent) { assert(!_hitTests.containsKey(event.pointer)); hitTestResult = HitTestResult(); //失去碰撞的控件组 hitTest(hitTestResult, event.position); if (event is PointerDownEvent) { _hitTests[event.pointer] = hitTestResult; } assert(() { if (debugPrintHitTestResults) debugPrint('$event: $hitTestResult'); return true; }()); } //手指抬起 else if (event is PointerUpEvent || event is PointerCancelEvent) { hitTestResult = _hitTests.remove(event.pointer); } //缓存点击的事件,接下来产生滑动的时候间接复用原来的碰撞控件组 else if (event.down) { // Because events that occur with the pointer down (like // PointerMoveEvents) should be dispatched to the same place that their // initial PointerDownEvent was, we want to re-use the path we found when // the pointer went down, rather than do hit detection each time we get // such an event. hitTestResult = _hitTests[event.pointer]; } assert(() { if (debugPrintMouseHoverEvents && event is PointerHoverEvent) debugPrint('$event'); return true; }()); if (hitTestResult != null || event is PointerHoverEvent || event is PointerAddedEvent || event is PointerRemovedEvent) { dispatchEvent(event, hitTestResult); } }
这个办法的次要目标就是失去HitTestResult,就是依据按下的坐标地位找出view树中哪些控件在点击的范畴内,手指在挪动和抬起的时候都复用以后的事件,区别在于不同的手指有不同的索引值。接下来,看一下用户的触摸行为,hitTest首先会进入RendererBinding解决,关上RendererBinding类的hitTest办法,如下所示。
RenderView get renderView => _pipelineOwner.rootNode as RenderView;void hitTest(HitTestResult result, Offset position) { assert(renderView != null); renderView.hitTest(result, position: position); super.hitTest(result, position); }
其中,RenderView能够了解为Flutter 视图树的根View,在Flutter中也叫做Widget ,一个Widget 对应一个Element 。在Flutter中,渲染会三棵树,即Widget 树、Element 树和RenderObject 树。咱们进行页面布局剖析时,就能够看到它们,如下所示。
对于Widget 树、Element 树和RenderObject 树,能够查看Flutter渲染之Widget、Element 和 RenderObject的介绍。
而后,咱们关上renderView.hitTest办法,对应的代码如下所示。
bool hitTest(HitTestResult result, { Offset position }) { if (child != null) child.hitTest(BoxHitTestResult.wrap(result), position: position); result.add(HitTestEntry(this)); return true; }
能够看到,根视图是先从子view开始放进汇合,放完子view再放本人,这和前端JS点击事件冒泡的原理是一样的。并且,只有满足条件子视图才会放到 入RenderBox 的这个办法中。
bool hitTest(BoxHitTestResult result, { @required Offset position }) { //所点击的范畴是否在以后控件的范畴内 if (_size.contains(position)) { //先增加孩子中的事件后选人 if (hitTestChildren(result, position: position) || hitTestSelf(position)) { result.add(BoxHitTestEntry(this, position)); return true; } } return false; }
接下来,看一下Stack小部件hitTestChildren的实现,源码如下。
@override bool hitTestChildren(BoxHitTestResult result, { Offset position }) { return defaultHitTestChildren(result, position: position); }bool defaultHitTestChildren(BoxHitTestResult result, { Offset position }) { // the x, y parameters have the top left of the node's box as the origin ChildType child = lastChild; while (child != null) { final ParentDataType childParentData = child.parentData; final bool isHit = result.addWithPaintOffset( offset: childParentData.offset, position: position, hitTest: (BoxHitTestResult result, Offset transformed) { assert(transformed == position - childParentData.offset); return child.hitTest(result, position: transformed); }, ); if (isHit) return true; child = childParentData.previousSibling; } return false; }
这个办法的作用就是判断蕴含Padding的视图是否在点击范畴内,如果命中,则阻止其余事件持续冒泡。看到此处,咱们大体能够看出,Flutter的事件处理次要是判断点击的坐标知否在控件范畴内,如果在范畴内间接响应,如果不在持续向上冒泡,并且事件是从叶子开始的,也即Web中的事件冒泡。
实现命中解决后,接下来回到事件处理的主流程,即事件派发dispatchEvent,代码位于gestrues/binding外面,源码如下。
void dispatchEvent(PointerEvent event, HitTestResult hitTestResult) { assert(!locked); // No hit test information implies that this is a hover or pointer // add/remove event.这种状况出在指针悬停屏幕上方,微微接触或不接触,是手机敏感而言 if (hitTestResult == null) { assert(event is PointerHoverEvent || event is PointerAddedEvent || event is PointerRemovedEvent); try { pointerRouter.route(event); } catch (exception, stack) { FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher( exception: exception, stack: stack, library: 'gesture library', context: ErrorDescription('while dispatching a non-hit-tested pointer event'), event: event, hitTestEntry: null, informationCollector: () sync* { yield DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty); }, )); } return; } for (HitTestEntry entry in hitTestResult.path) { try { entry.target.handleEvent(event.transformed(entry.transform), entry); } catch (exception, stack) { FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher( exception: exception, stack: stack, library: 'gesture library', context: ErrorDescription('while dispatching a pointer event'), event: event, hitTestEntry: entry, informationCollector: () sync* { yield DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty); yield DiagnosticsProperty<HitTestTarget>('Target', entry.target, style: DiagnosticsTreeStyle.errorProperty); }, )); } } }
此办法最基本的作用是循环事件散发,并以冒泡的模式从底部到散发事件,当事件被命中时,即由以后子节点处理事件,这和Android的事件散发的逻辑是一样的。上面以GestureDetector和Listener来举例事件散发的不同。如果用Listener的话,Listener的组件最终对应的RenderObject是RenderPointerListener,它的监测以后点击是否命中的办法如下。
bool hitTest(BoxHitTestResult result, { Offset position }) { bool hitTarget = false; if (size.contains(position)) { hitTarget = hitTestChildren(result, position: position) || hitTestSelf(position); if (hitTarget || behavior == HitTestBehavior.translucent) result.add(BoxHitTestEntry(this, position)); } return hitTarget; } @override bool hitTestSelf(Offset position) => behavior == HitTestBehavior.opaque;
应用Listener嵌套的子组件默认状况下是命中的,很多子部件例如Text
、Image
等,它们的hitTestSelf返回True,如果咱们为Text嵌套了Listener,那么事件散发的时候设计的代码如下所示。
void handleEvent(PointerEvent event, HitTestEntry entry) { assert(debugHandleEvent(event, entry)); if (onPointerDown != null && event is PointerDownEvent) return onPointerDown(event); if (onPointerMove != null && event is PointerMoveEvent) return onPointerMove(event); if (onPointerUp != null && event is PointerUpEvent) return onPointerUp(event); if (onPointerCancel != null && event is PointerCancelEvent) return onPointerCancel(event); if (onPointerSignal != null && event is PointerSignalEvent) return onPointerSignal(event); }
如果应用的是GestureDetector的话,build办法会为咱们增加很多解决手势的办法类,如TapGestureRecognizer
,通过解决手势辨认后,最终返回的是RawGestureDetector
,波及的代码如下。
final Map<Type, GestureRecognizerFactory> gestures = <Type, GestureRecognizerFactory>{}; if ( onTapDown != null || onTapUp != null || onTap != null || onTapCancel != null || onSecondaryTapDown != null || onSecondaryTapUp != null || onSecondaryTapCancel != null ) { gestures[TapGestureRecognizer] = GestureRecognizerFactoryWithHandlers<TapGestureRecognizer>( () => TapGestureRecognizer(debugOwner: this), (TapGestureRecognizer instance) { instance ..onTapDown = onTapDown ..onTapUp = onTapUp ..onTap = onTap ..onTapCancel = onTapCancel ..onSecondaryTapDown = onSecondaryTapDown ..onSecondaryTapUp = onSecondaryTapUp ..onSecondaryTapCancel = onSecondaryTapCancel; }, ); } if (onDoubleTap != null) { gestures[DoubleTapGestureRecognizer] = GestureRecognizerFactoryWithHandlers<DoubleTapGestureRecognizer>( () => DoubleTapGestureRecognizer(debugOwner: this), (DoubleTapGestureRecognizer instance) { instance ..onDoubleTap = onDoubleTap; }, ); } if (onLongPress != null || onLongPressUp != null || onLongPressStart != null || onLongPressMoveUpdate != null || onLongPressEnd != null) { gestures[LongPressGestureRecognizer] = GestureRecognizerFactoryWithHandlers<LongPressGestureRecognizer>( () => LongPressGestureRecognizer(debugOwner: this), (LongPressGestureRecognizer instance) { instance ..onLongPress = onLongPress ..onLongPressStart = onLongPressStart ..onLongPressMoveUpdate = onLongPressMoveUpdate ..onLongPressEnd =onLongPressEnd ..onLongPressUp = onLongPressUp; }, ); } if (onVerticalDragDown != null || onVerticalDragStart != null || onVerticalDragUpdate != null || onVerticalDragEnd != null || onVerticalDragCancel != null) { gestures[VerticalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers<VerticalDragGestureRecognizer>( () => VerticalDragGestureRecognizer(debugOwner: this), (VerticalDragGestureRecognizer instance) { instance ..onDown = onVerticalDragDown ..onStart = onVerticalDragStart ..onUpdate = onVerticalDragUpdate ..onEnd = onVerticalDragEnd ..onCancel = onVerticalDragCancel ..dragStartBehavior = dragStartBehavior; }, ); } if (onHorizontalDragDown != null || onHorizontalDragStart != null || onHorizontalDragUpdate != null || onHorizontalDragEnd != null || onHorizontalDragCancel != null) { gestures[HorizontalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers<HorizontalDragGestureRecognizer>( () => HorizontalDragGestureRecognizer(debugOwner: this), (HorizontalDragGestureRecognizer instance) { instance ..onDown = onHorizontalDragDown ..onStart = onHorizontalDragStart ..onUpdate = onHorizontalDragUpdate ..onEnd = onHorizontalDragEnd ..onCancel = onHorizontalDragCancel ..dragStartBehavior = dragStartBehavior; }, ); } if (onPanDown != null || onPanStart != null || onPanUpdate != null || onPanEnd != null || onPanCancel != null) { gestures[PanGestureRecognizer] = GestureRecognizerFactoryWithHandlers<PanGestureRecognizer>( () => PanGestureRecognizer(debugOwner: this), (PanGestureRecognizer instance) { instance ..onDown = onPanDown ..onStart = onPanStart ..onUpdate = onPanUpdate ..onEnd = onPanEnd ..onCancel = onPanCancel ..dragStartBehavior = dragStartBehavior; }, ); } if (onScaleStart != null || onScaleUpdate != null || onScaleEnd != null) { gestures[ScaleGestureRecognizer] = GestureRecognizerFactoryWithHandlers<ScaleGestureRecognizer>( () => ScaleGestureRecognizer(debugOwner: this), (ScaleGestureRecognizer instance) { instance ..onStart = onScaleStart ..onUpdate = onScaleUpdate ..onEnd = onScaleEnd; }, ); } if (onForcePressStart != null || onForcePressPeak != null || onForcePressUpdate != null || onForcePressEnd != null) { gestures[ForcePressGestureRecognizer] = GestureRecognizerFactoryWithHandlers<ForcePressGestureRecognizer>( () => ForcePressGestureRecognizer(debugOwner: this), (ForcePressGestureRecognizer instance) { instance ..onStart = onForcePressStart ..onPeak = onForcePressPeak ..onUpdate = onForcePressUpdate ..onEnd = onForcePressEnd; }, ); } return RawGestureDetector( gestures: gestures, behavior: behavior, excludeFromSemantics: excludeFromSemantics, child: child, );
并且,RawGestureDetector默认应用的也是Listener,它注册了手指按下的办法,散发的时候Down事件是sdk默认解决的。
void _handlePointerDown(PointerDownEvent event) { assert(_recognizers != null); for (GestureRecognizer recognizer in _recognizers.values) recognizer.addPointer(event); }
此办法会向Binding路由器中注册那些须要解决的事件,如果咱们只申明了点击事件,那么汇合中负责增加的GestureRecognizer的实现类就是TapGestureRecognizer,接下来咱们看一下addPointer办法。
void addPointer(PointerDownEvent event) { _pointerToKind[event.pointer] = event.kind; if (isPointerAllowed(event)) { addAllowedPointer(event); } else { handleNonAllowedPointer(event); } }bool isPointerAllowed(PointerDownEvent event) { switch (event.buttons) { case kPrimaryButton: if (onTapDown == null && onTap == null && onTapUp == null && onTapCancel == null) return false; break; case kSecondaryButton: if (onSecondaryTapDown == null && onSecondaryTapUp == null && onSecondaryTapCancel == null) return false; break; default: return false; } return super.isPointerAllowed(event); }
isPointerAllowed办法的作用就是用来断定以后的手势,默认返回false,如果事件比命中,接下来执行addAllowedPointer办法,如下所示。
void addAllowedPointer(PointerDownEvent event) { startTrackingPointer(event.pointer, event.transform); if (state == GestureRecognizerState.ready) { state = GestureRecognizerState.possible; primaryPointer = event.pointer; initialPosition = OffsetPair(local: event.localPosition, global: event.position); if (deadline != null) _timer = Timer(deadline, () => didExceedDeadlineWithEvent(event)); } void startTrackingPointer(int pointer, [Matrix4 transform]) { GestureBinding.instance.pointerRouter.addRoute(pointer, handleEvent, transform); _trackedPointers.add(pointer); assert(!_entries.containsValue(pointer)); _entries[pointer] = _addPointerToArena(pointer); }
这两个办法的次要作用就是用来将以后的handleEvent办法增加到GestureBinding路由器外面去,而_addPointerToArena是就是增加处理事件的具体逻辑。接下来,咱们来看一下GestureBinding外面的handleEvent函数的事件散发逻辑。
void handleEvent(PointerEvent event, HitTestEntry entry) { pointerRouter.route(event); if (event is PointerDownEvent) { gestureArena.close(event.pointer); } else if (event is PointerUpEvent) { gestureArena.sweep(event.pointer); } else if (event is PointerSignalEvent) { pointerSignalResolver.resolve(event); } }}
如果手指按下的时候GestureRecognizer的handleEvent办法没有决策出到底哪个控件会成为事件的解决者,那么会执行 gestureArena.close()办法,如下所示。
void close(int pointer) { final _GestureArena state = _arenas[pointer]; if (state == null) return; // This arena either never existed or has been resolved. state.isOpen = false; assert(_debugLogDiagnostic(pointer, 'Closing', state)); _tryToResolveArena(pointer, state); }
如果未决策出哪个控件处理事件的时候,state.isOpen此时被标记为false,也即是敞开手势的解决。
void _tryToResolveArena(int pointer, _GestureArena state) { assert(_arenas[pointer] == state); assert(!state.isOpen); if (state.members.length == 1) { scheduleMicrotask(() => _resolveByDefault(pointer, state)); } else if (state.members.isEmpty) { _arenas.remove(pointer); assert(_debugLogDiagnostic(pointer, 'Arena empty.')); } else if (state.eagerWinner != null) { assert(_debugLogDiagnostic(pointer, 'Eager winner: ${state.eagerWinner}')); _resolveInFavorOf(pointer, state, state.eagerWinner); } }
如果手势竞争中,有竞争胜出者,则由胜出者执行事件处理,如下所示。
void _resolveInFavorOf(int pointer, _GestureArena state, GestureArenaMember member) { assert(state == _arenas[pointer]); assert(state != null); assert(state.eagerWinner == null || state.eagerWinner == member); assert(!state.isOpen); _arenas.remove(pointer); //其余的命中全副回绝 for (GestureArenaMember rejectedMember in state.members) { if (rejectedMember != member) rejectedMember.rejectGesture(pointer); } member.acceptGesture(pointer); }
如果事件处理中没有具体的事件处理对象,将会默认采纳最底层的的叶子节点控件作为事件处理者,也就是说最内层的那个控件将耗费事件。也就是说,如果应用GestureRecognizer来辨认手势事件时,最终事件会被最内层的GestureRecognizer耗费,这和Android单个控件耗费事件差不多,所以嵌套滚动总是先滚动内层,先被内层耗费,而后再执行外层。
参考: Flutter 事件散发