1.np.arange创立指定步长

函数定义:

def arange(start=None, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__     """    arange([start,] stop[, step,], dtype=None)            Return evenly spaced values within a given interval.            Values are generated within the half-open interval ``[start, stop)``        (in other words, the interval including `start` but excluding `stop`).        For integer arguments the function is equivalent to the Python built-in        `range` function, but returns an ndarray rather than a list.            When using a non-integer step, such as 0.1, the results will often not        be consistent.  It is better to use `numpy.linspace` for these cases.            Parameters        ----------        start : number, optional            Start of interval.  The interval includes this value.  The default            start value is 0.        stop : number            End of interval.  The interval does not include this value, except            in some cases where `step` is not an integer and floating point            round-off affects the length of `out`.        step : number, optional            Spacing between values.  For any output `out`, this is the distance            between two adjacent values, ``out[i+1] - out[i]``.  The default            step size is 1.  If `step` is specified as a position argument,            `start` must also be given.        dtype : dtype            The type of the output array.  If `dtype` is not given, infer the data            type from the other input arguments.            Returns        -------        arange : ndarray            Array of evenly spaced values.                For floating point arguments, the length of the result is            ``ceil((stop - start)/step)``.  Because of floating point overflow,            this rule may result in the last element of `out` being greater            than `stop`.            See Also        --------        numpy.linspace : Evenly spaced numbers with careful handling of endpoints.        numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.        numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.    """    pass

阐明:numpy.arange函数和常常应用的range函数十分的相似,只是多减少了一个dtype参数,dtype参数的作用和numpy.array外面介绍的作用是统一的。

range()和arange()只所以这么灵便,一方面是python的灵便的参数机制;另一方面是对接管的参数数目进行判断,依据参数数目的不同执行不同的操作。

示例代码:

# 指定起点a = np.arange(10)print(a)print('--' * 20)# 指定终点、起点b = np.arange(1, 10)print(b)print('--' * 20)# 指定终点、起点、步长c = np.arange(1, 10, 2)print(c)print('--' * 20)# 指定终点、起点、步长、dtype类型d = np.arange(1, 10, 2, float)print(d)print('--' * 20)# 小数的状况也能应用numpy,理论状况这样应用的比拟少e = np.arange(0.1, 1.0, 0.1, float)print(e)

运行后果:

[0 1 2 3 4 5 6 7 8 9]----------------------------------------[1 2 3 4 5 6 7 8 9]----------------------------------------[1 3 5 7 9]----------------------------------------[1. 3. 5. 7. 9.]----------------------------------------[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]

2.np.random.random创立随机数

用于创立值范畴在[0.0, 1.0)区间的随机数组

函数定义:

def random(size=None): # real signature unknown; restored from __doc__    """    random(size=None)                Return random floats in the half-open interval [0.0, 1.0). Alias for            `random_sample` to ease forward-porting to the new random API.    """    pass

通过介绍能够晓得,random是random_sample的别名。咱们再来看一下random_sample函数。

def random_sample(size=None): # real signature unknown; restored from __doc__    """    random_sample(size=None)                Return random floats in the half-open interval [0.0, 1.0).                Results are from the "continuous uniform" distribution over the            stated interval.  To sample :math:`Unif[a, b), b > a` multiply            the output of `random_sample` by `(b-a)` and add `a`::                  (b - a) * random_sample() + a                .. note::                New code should use the ``random`` method of a ``default_rng()``                instance instead; see `random-quick-start`.                Parameters            ----------            size : int or tuple of ints, optional                Output shape.  If the given shape is, e.g., ``(m, n, k)``, then                ``m * n * k`` samples are drawn.  Default is None, in which case a                single value is returned.                Returns            -------            out : float or ndarray of floats                Array of random floats of shape `size` (unless ``size=None``, in which                case a single float is returned).       """    pass

示例代码:

import numpy as npa1 = np.random.random(size=1)a2 = np.random.random(size=(1,))a3 = np.random.random_sample(size=(1,))print(a1)print("~~" * 10)print(a2)print("~~" * 10)print(a3)print('--' * 20)b1 = np.random.random(size=(2, 3))b2 = np.random.random_sample(size=(2, 3))print(b1)print("~~" * 10)print(b2)print("--" * 20)

运行后果:

[0.12406671]

[0.51463238]

[0.89463238]----------------------------------------[[0.10907993 0.16789092 0.43668195] [0.79106801 0.22137333 0.01017769]]

[[0.65803265 0.11789976 0.56492191]

[0.74975911 0.09096749 0.05589122]]

程序阐明:通过运行后果咱们能够看到a1、a2、a3这三个构造统一,阐明传递参数最终是以元组的模式进行解析的,另外一个就是random和random_sample成果统一。> 为了程序规规范性,倡议创立ndarray数组过程指定参数size以元组的模式传递。   ### 3.np.random.randint创立随机整数次要用于创立指定区间范畴的整数数据类型数组函数定义:

def randint(low, high=None, size=None, dtype=None): # real signature unknown; restored from doc

"""randint(low, high=None, size=None, dtype=int)        Return random integers from `low` (inclusive) to `high` (exclusive).        Return random integers from the "discrete uniform" distribution of        the specified dtype in the "half-open" interval [`low`, `high`). If        `high` is None (the default), then results are from [0, `low`).        .. note::            New code should use the ``integers`` method of a ``default_rng()``            instance instead; see `random-quick-start`.        Parameters        ----------        low : int or array-like of ints            Lowest (signed) integers to be drawn from the distribution (unless            ``high=None``, in which case this parameter is one above the            *highest* such integer).        high : int or array-like of ints, optional            If provided, one above the largest (signed) integer to be drawn            from the distribution (see above for behavior if ``high=None``).            If array-like, must contain integer values        size : int or tuple of ints, optional            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then            ``m * n * k`` samples are drawn.  Default is None, in which case a            single value is returned.        dtype : dtype, optional            Desired dtype of the result. Byteorder must be native.            The default value is int.            .. versionadded:: 1.11.0        Returns        -------        out : int or ndarray of ints            `size`-shaped array of random integers from the appropriate            distribution, or a single such random int if `size` not provided. """pass
阐明:1. 参数`low`和参数`high`应用相似于random函数的应用办法2. size用法和下面random函数介绍的一样,倡议应用元组3. dtype函数用于指定数据类型,留神:**因为randint自身曾经指定整数类型的范畴,所以不能指定非整形数据类型。**示例代码:

import numpy as np

指定起点

a1 = np.random.randint(10)
print(a1)
print('--' * 20)

指定终点、起点

b1 = np.random.randint(1, 10)
print(b1)
print('--' * 20)

指定终点、起点、大小

c1 = np.random.randint(1, 10, size=(2, 3))
print(c1)
print('--' * 20)

指定终点、起点、大小、数据类型

d1 = np.random.randint(1, 10, size=(2, 3), dtype=np.uint8)
print(d1)
print('--' * 20)

运行后果:

9

9

[[9 8 6]

[1 1 5]]

[[6 3 8]

[9 9 5]]

### 4.创立正态分布数组#### 4.1 np.random.randn创立规范正太散布用于创立符合标准正态分布(冀望为0,方差为1)函数定义

def randn(*dn): # known case of numpy.random.mtrand.randn

"""randn(d0, d1, ..., dn)        Return a sample (or samples) from the "standard normal" distribution.        .. note::            This is a convenience function for users porting code from Matlab,            and wraps `standard_normal`. That function takes a            tuple to specify the size of the output, which is consistent with            other NumPy functions like `numpy.zeros` and `numpy.ones`.        .. note::            New code should use the ``standard_normal`` method of a ``default_rng()``            instance instead; see `random-quick-start`.        If positive int_like arguments are provided, `randn` generates an array        of shape ``(d0, d1, ..., dn)``, filled        with random floats sampled from a univariate "normal" (Gaussian)        distribution of mean 0 and variance 1. A single float randomly sampled        from the distribution is returned if no argument is provided.        Parameters        ----------        d0, d1, ..., dn : int, optional            The dimensions of the returned array, must be non-negative.            If no argument is given a single Python float is returned.        Returns        -------        Z : ndarray or float            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from            the standard normal distribution, or a single such float if            no parameters were supplied."""pass
#### 4.2 np.random.common指定方差和冀望用于创立指定冀望和方差正态分布数据的数组函数定义

def normal(loc=0.0, scale=1.0, size=None): # real signature unknown; restored from doc

"""normal(loc=0.0, scale=1.0, size=None)        Draw random samples from a normal (Gaussian) distribution.        The probability density function of the normal distribution, first        derived by De Moivre and 200 years later by both Gauss and Laplace        independently [2]_, is often called the bell curve because of        its characteristic shape (see the example below).        The normal distributions occurs often in nature.  For example, it        describes the commonly occurring distribution of samples influenced        by a large number of tiny, random disturbances, each with its own        unique distribution [2]_.        .. note::            New code should use the ``normal`` method of a ``default_rng()``            instance instead; see `random-quick-start`.        Parameters        ----------        loc : float or array_like of floats            Mean ("centre") of the distribution.        scale : float or array_like of floats            Standard deviation (spread or "width") of the distribution. Must be            non-negative.        size : int or tuple of ints, optional            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then            ``m * n * k`` samples are drawn.  If size is ``None`` (default),            a single value is returned if ``loc`` and ``scale`` are both scalars.            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.        Returns        -------        out : ndarray or scalar            Drawn samples from the parameterized normal distribution.        See Also        --------        scipy.stats.norm : probability density function, distribution or            cumulative density function, etc.        Generator.normal: which should be used for new code.        Notes        -----        The probability density for the Gaussian distribution is        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },        where :math:`\mu` is the mean and :math:`\sigma` the standard        deviation. The square of the standard deviation, :math:`\sigma^2`,        is called the variance.        The function has its peak at the mean, and its "spread" increases with        the standard deviation (the function reaches 0.607 times its maximum at        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that        normal is more likely to return samples lying close to the mean, rather        than those far away.        References        ----------        .. [1] Wikipedia, "Normal distribution",               https://en.wikipedia.org/wiki/Normal_distribution        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,               Random Variables and Random Signal Principles", 4th ed., 2001,               pp. 51, 51, 125."""pass
示例代码:

import numpy as np

a1 = np.random.randn(2)
a2 = np.random.normal(0, 1, 2)
print(a1)
print('~~' * 10)
print(a2)
print('--' * 20)

b1 = np.random.randn(2, 3)
b2 = np.random.normal(0, 1, (2, 3))
print(b1)
print('~~' * 10)
print(b2)

运行后果:

[-0.08968467 0.19935229]

[-2.70345057  0.31810813]----------------------------------------[[ 0.26098236  0.59379753 -0.70686308] [-0.78541554 -0.27910239 -0.15193886]]

[[-0.92466689 0.580677 0.80772163]
[ 2.17103711 -0.11340317 -0.06021829]]

---> 备注:   > 更多精彩博客,请拜访:[聂发俊的技术博客](http://www.niefajun.com/)  博客内容批改和更新,只更新集体博客。> 对应视频教程,请拜访:[python400](https://www.bilibili.com/video/BV1WE411j7p3)  > 残缺markdown笔记,请拜访: [python400_learn_github](https://github.com/niefajun/python400_learn)