OpenCV的Mat类型以及根本函数应用

Mat和IplImage的区别

Mat和IplImage的次要区别

在OpenCV中IplImage是示意一个图像的构造体,也是从OpenCV1.0到目前最为重要的一个构造;在之前的图像示意用IplImage,而且之前的OpenCV是用C语言编写的,提供的接口也是C语言接口。

Mat是起初OpenCV封装的一个C++类,用来示意一个图像,和IplImage示意基本一致,然而Mat还增加了一些图像函数。

IplImage

IplImage数据结构的定义在opencvbuildincludeopencv2coretypes_c.h文件中。

typedef struct _IplImage{    int  nSize;             /* sizeof(IplImage) */    int  ID;                /* version (=0)*/    int  nChannels;         /* Most of OpenCV functions support 1,2,3 or 4 channels */    int  alphaChannel;      /* Ignored by OpenCV */    int  depth;             /* Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S,                               IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported.  */    char colorModel[4];     /* Ignored by OpenCV */    char channelSeq[4];     /* ditto */    int  dataOrder;         /* 0 - interleaved color channels, 1 - separate color channels.                               cvCreateImage can only create interleaved images */    int  origin;            /* 0 - top-left origin,                               1 - bottom-left origin (Windows bitmaps style).  */    int  align;             /* Alignment of image rows (4 or 8).                               OpenCV ignores it and uses widthStep instead.    */    int  width;             /* Image width in pixels.                           */    int  height;            /* Image height in pixels.                          */    struct _IplROI *roi;    /* Image ROI. If NULL, the whole image is selected. */    struct _IplImage *maskROI;      /* Must be NULL. */    void  *imageId;                 /* "           " */    struct _IplTileInfo *tileInfo;  /* "           " */    int  imageSize;         /* Image data size in bytes                               (==image->height*image->widthStep                               in case of interleaved data)*/    char *imageData;        /* Pointer to aligned image data.         */    int  widthStep;         /* Size of aligned image row in bytes.    */    int  BorderMode[4];     /* Ignored by OpenCV.                     */    int  BorderConst[4];    /* Ditto.                                 */    char *imageDataOrigin;  /* Pointer to very origin of image data                               (not necessarily aligned) -                               needed for correct deallocation */}IplImage;

可见,IplImage是一个示意图像的构造体:C语言操作OpenCV的数据结构。位置等同于Mat,能够说是历史版本了。

<!--more-->

Mat

Mat这个数据结构定义在opencvbuildincludeopencv2corecore.hpp这个文件。

class CV_EXPORTS Mat{public:    //! default constructor    Mat();    //! constructs 2D matrix of the specified size and type    // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)    Mat(int rows, int cols, int type);    Mat(Size size, int type);    //! constucts 2D matrix and fills it with the specified value _s.    Mat(int rows, int cols, int type, const Scalar& s);    Mat(Size size, int type, const Scalar& s);    //! constructs n-dimensional matrix    Mat(int ndims, const int* sizes, int type);    Mat(int ndims, const int* sizes, int type, const Scalar& s);    //! copy constructor    Mat(const Mat& m);    //! constructor for matrix headers pointing to user-allocated data    Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);    Mat(Size size, int type, void* data, size_t step=AUTO_STEP);    Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);    //! creates a matrix header for a part of the bigger matrix    Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());    Mat(const Mat& m, const Rect& roi);    Mat(const Mat& m, const Range* ranges);    //! converts old-style CvMat to the new matrix; the data is not copied by default    Mat(const CvMat* m, bool copyData=false);    //! converts old-style CvMatND to the new matrix; the data is not copied by default    Mat(const CvMatND* m, bool copyData=false);    //! converts old-style IplImage to the new matrix; the data is not copied by default    Mat(const IplImage* img, bool copyData=false);    //! builds matrix from std::vector with or without copying the data   ......protected:    void initEmpty();};

Mat是OpenCV最根本的数据结构,Mat即矩阵(Matrix)的缩写咱们在读取图片的时候就是将图片定义为Mat类型,其重载的构造函数一大堆。

其中有一个构造函数能够很不便的间接将IplImage转化为Mat

Mat(const IplImage* img, bool copyData=false);

根本函数应用

imread

性能:从一个文件中载入图片

定义:

Mat imread( const string& filename, int flags=1 );

■第一个参数,const string&类型的filename,这是咱们须要载入的图片路径名。

在Windows操作系统下,OpenCV的imread函数反对罕用的图片类型,比方bmp,jpg,jpeg,png等等。

■第二个参数,int类型的flags,为载入标识,它指定一个加载图像的色彩类型。能够看到它自带缺省值1.所以有时候这个参数在调用时咱们能够疏忽。如果在调用时疏忽这个参数,就示意载入三通道的彩色图像。具体起因看上面的解释。

flags是int型的变量,咱们能够按如下形式取值:

  • flags >0返回一个3通道的彩色图像。
  • flags =0返回灰度图像。
  • flags <0返回蕴含Alpha通道的加载的图像。

须要留神的点:输入的图像默认状况下是不载入Alpha通道进来的。如果咱们须要载入Alpha通道的话呢,这里就须要取负值。

所以默认值flags=1示意载入三通道的彩色图像。

imshow

性能:显示一个图像

定义:

void imshow(const string& winname, InputArray mat);  

■ 第一个参数,const string&类型的winname,填须要显示的窗口标识名称。

■ 第二个参数,InputArray 类型的mat,填须要显示的图像。

InputArray 类型是什么类型?

通过转到定义,咱们能够在opencvbuildincludeopencv2highguihighgui.hpp文件中找到imshow的原型:

CV_EXPORTS_W void imshow(const string& winname, InputArray mat);

进一步对InputArray转到定义,在opencvbuildincludeopencv2corecore.hpp文件中查到一个typedef申明:

typedef const _InputArray& InputArray;  

这其实一个类型申明援用,就是说_InputArrayInputArray是一个意思,而后再次对_InputArray进行转到定义,终于,在opencvbuildincludeopencv2corecore.hpp文件中发现了InputArray的真身:

class CV_EXPORTS _InputArray{public:    enum {        KIND_SHIFT = 16,        FIXED_TYPE = 0x8000 << KIND_SHIFT,        FIXED_SIZE = 0x4000 << KIND_SHIFT,        KIND_MASK = ~(FIXED_TYPE|FIXED_SIZE) - (1 << KIND_SHIFT) + 1,        NONE              = 0 << KIND_SHIFT,        MAT               = 1 << KIND_SHIFT,        MATX              = 2 << KIND_SHIFT,        STD_VECTOR        = 3 << KIND_SHIFT,        STD_VECTOR_VECTOR = 4 << KIND_SHIFT,        STD_VECTOR_MAT    = 5 << KIND_SHIFT,        EXPR              = 6 << KIND_SHIFT,        OPENGL_BUFFER     = 7 << KIND_SHIFT,        OPENGL_TEXTURE    = 8 << KIND_SHIFT,        GPU_MAT           = 9 << KIND_SHIFT,        OCL_MAT           =10 << KIND_SHIFT    };    _InputArray();    _InputArray(const Mat& m);    _InputArray(const MatExpr& expr);    template<typename _Tp> _InputArray(const _Tp* vec, int n);    template<typename _Tp> _InputArray(const vector<_Tp>& vec);    template<typename _Tp> _InputArray(const vector<vector<_Tp> >& vec);    _InputArray(const vector<Mat>& vec);    template<typename _Tp> _InputArray(const vector<Mat_<_Tp> >& vec);    template<typename _Tp> _InputArray(const Mat_<_Tp>& m);    template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);    _InputArray(const Scalar& s);    _InputArray(const double& val);    // < Deprecated    _InputArray(const GlBuffer& buf);    _InputArray(const GlTexture& tex);    // >    _InputArray(const gpu::GpuMat& d_mat);    _InputArray(const ogl::Buffer& buf);    _InputArray(const ogl::Texture2D& tex);    virtual Mat getMat(int i=-1) const;    virtual void getMatVector(vector<Mat>& mv) const;    // < Deprecated    virtual GlBuffer getGlBuffer() const;    virtual GlTexture getGlTexture() const;    // >    virtual gpu::GpuMat getGpuMat() const;    /*virtual*/ ogl::Buffer getOGlBuffer() const;    /*virtual*/ ogl::Texture2D getOGlTexture2D() const;    virtual int kind() const;    virtual Size size(int i=-1) const;    virtual size_t total(int i=-1) const;    virtual int type(int i=-1) const;    virtual int depth(int i=-1) const;    virtual int channels(int i=-1) const;    virtual bool empty() const;#ifdef OPENCV_CAN_BREAK_BINARY_COMPATIBILITY    virtual ~_InputArray();#endif    int flags;    void* obj;    Size sz;};

能够看到,_InputArray类的外面首先定义了一个枚举,而后定了各个构造函数和虚函数。很多时候,遇到函数原型中的InputArray类型,咱们把它简略地当做Mat类型就行了。

imshow 函数用于在指定的窗口中显示图像。如果窗口是用CV_WINDOW_AUTOSIZE(默认值)标记创立的,那么显示图像原始大小。否则,将图像进行缩放以适宜窗口。而imshow 函数缩放图像,取决于图像的深度:

  • 如果载入的图像是8位无符号类型(8-bit unsigned),就显示图像原本的样子。
  • 如果图像是16位无符号类型(16-bit unsigned)或32位整型(32-bit integer),便用像素值除以256。也就是说,值的范畴是[0,255 x 256]映射到[0,255]。
  • 如果图像是32位浮点型(32-bit floating-point),像素值便要乘以255。也就是说,该值的范畴是[0,1]映射到[0,255]。

imwrite

性能:输入图像到文件

定义:

bool imwrite( const string& filename, InputArray img,              const vector<int>& params=vector<int>());

■ 第一个参数,const string&类型的filename,填须要写入的文件名就行了,带上后缀,比方,“123.jpg”这样。

■ 第二个参数,InputArray类型的img,个别填一个Mat类型的图像数据就行了。

■ 第三个参数,const vector<int>&类型的params,示意为特定格局保留的参数编码,它有默认值vector<int>(),所以个别状况下不须要填写。

cvtcolor

性能:将一个图像的色彩空间转换到另一种(Converts an image from one color space to another.)

参考:cvtcolor

定义:

void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 );

■ 第一个参数,InputArray类型的src ,-- Source image

■ 第二个参数,OutputArray类型的dst,Destination image of the same size and depth as src

■ 第三个参数,int类型的code,色彩空间变换代码Color space conversion code。

具体的变换代码参见:opencvbuildincludeopencv2imgproctypes_c.h文件中的第87行,枚举类型。

/* Constants for color conversion */enum{    CV_BGR2BGRA    =0,    CV_RGB2RGBA    =CV_BGR2BGRA,    CV_BGRA2BGR    =1,    CV_RGBA2RGB    =CV_BGRA2BGR,    CV_BGR2RGBA    =2,    CV_RGB2BGRA    =CV_BGR2RGBA,    CV_RGBA2BGR    =3,    CV_BGRA2RGB    =CV_RGBA2BGR,    CV_BGR2RGB     =4,    CV_RGB2BGR     =CV_BGR2RGB,    CV_BGRA2RGBA   =5,    CV_RGBA2BGRA   =CV_BGRA2RGBA,    CV_BGR2GRAY    =6,    CV_RGB2GRAY    =7,    CV_GRAY2BGR    =8,    CV_GRAY2RGB    =CV_GRAY2BGR,    CV_GRAY2BGRA   =9,    CV_GRAY2RGBA   =CV_GRAY2BGRA,    CV_BGRA2GRAY   =10,    CV_RGBA2GRAY   =11,    CV_BGR2BGR565  =12,    CV_RGB2BGR565  =13,    CV_BGR5652BGR  =14,    CV_BGR5652RGB  =15,    CV_BGRA2BGR565 =16,    CV_RGBA2BGR565 =17,    CV_BGR5652BGRA =18,    CV_BGR5652RGBA =19,    CV_GRAY2BGR565 =20,    CV_BGR5652GRAY =21,    CV_BGR2BGR555  =22,    CV_RGB2BGR555  =23,    CV_BGR5552BGR  =24,    CV_BGR5552RGB  =25,    CV_BGRA2BGR555 =26,    CV_RGBA2BGR555 =27,    CV_BGR5552BGRA =28,    CV_BGR5552RGBA =29,    CV_GRAY2BGR555 =30,    CV_BGR5552GRAY =31,    CV_BGR2XYZ     =32,    CV_RGB2XYZ     =33,    CV_XYZ2BGR     =34,    CV_XYZ2RGB     =35,    CV_BGR2YCrCb   =36,    CV_RGB2YCrCb   =37,    CV_YCrCb2BGR   =38,    CV_YCrCb2RGB   =39,    CV_BGR2HSV     =40,    CV_RGB2HSV     =41,    CV_BGR2Lab     =44,    CV_RGB2Lab     =45,    CV_BayerBG2BGR =46,    CV_BayerGB2BGR =47,    CV_BayerRG2BGR =48,    CV_BayerGR2BGR =49,    CV_BayerBG2RGB =CV_BayerRG2BGR,    CV_BayerGB2RGB =CV_BayerGR2BGR,    CV_BayerRG2RGB =CV_BayerBG2BGR,    CV_BayerGR2RGB =CV_BayerGB2BGR,    CV_BGR2Luv     =50,    CV_RGB2Luv     =51,    CV_BGR2HLS     =52,    CV_RGB2HLS     =53,    CV_HSV2BGR     =54,    CV_HSV2RGB     =55,    CV_Lab2BGR     =56,    CV_Lab2RGB     =57,    CV_Luv2BGR     =58,    CV_Luv2RGB     =59,    CV_HLS2BGR     =60,    CV_HLS2RGB     =61,    CV_BayerBG2BGR_VNG =62,    CV_BayerGB2BGR_VNG =63,    CV_BayerRG2BGR_VNG =64,    CV_BayerGR2BGR_VNG =65,    CV_BayerBG2RGB_VNG =CV_BayerRG2BGR_VNG,    CV_BayerGB2RGB_VNG =CV_BayerGR2BGR_VNG,    CV_BayerRG2RGB_VNG =CV_BayerBG2BGR_VNG,    CV_BayerGR2RGB_VNG =CV_BayerGB2BGR_VNG,    CV_BGR2HSV_FULL = 66,    CV_RGB2HSV_FULL = 67,    CV_BGR2HLS_FULL = 68,    CV_RGB2HLS_FULL = 69,    CV_HSV2BGR_FULL = 70,    CV_HSV2RGB_FULL = 71,    CV_HLS2BGR_FULL = 72,    CV_HLS2RGB_FULL = 73,    CV_LBGR2Lab     = 74,    CV_LRGB2Lab     = 75,    CV_LBGR2Luv     = 76,    CV_LRGB2Luv     = 77,    CV_Lab2LBGR     = 78,    CV_Lab2LRGB     = 79,    CV_Luv2LBGR     = 80,    CV_Luv2LRGB     = 81,    CV_BGR2YUV      = 82,    CV_RGB2YUV      = 83,    CV_YUV2BGR      = 84,    CV_YUV2RGB      = 85,    CV_BayerBG2GRAY = 86,    CV_BayerGB2GRAY = 87,    CV_BayerRG2GRAY = 88,    CV_BayerGR2GRAY = 89,    //YUV 4:2:0 formats family    CV_YUV2RGB_NV12 = 90,    CV_YUV2BGR_NV12 = 91,    CV_YUV2RGB_NV21 = 92,    CV_YUV2BGR_NV21 = 93,    CV_YUV420sp2RGB = CV_YUV2RGB_NV21,    CV_YUV420sp2BGR = CV_YUV2BGR_NV21,    CV_YUV2RGBA_NV12 = 94,    CV_YUV2BGRA_NV12 = 95,    CV_YUV2RGBA_NV21 = 96,    CV_YUV2BGRA_NV21 = 97,    CV_YUV420sp2RGBA = CV_YUV2RGBA_NV21,    CV_YUV420sp2BGRA = CV_YUV2BGRA_NV21,    CV_YUV2RGB_YV12 = 98,    CV_YUV2BGR_YV12 = 99,    CV_YUV2RGB_IYUV = 100,    CV_YUV2BGR_IYUV = 101,    CV_YUV2RGB_I420 = CV_YUV2RGB_IYUV,    CV_YUV2BGR_I420 = CV_YUV2BGR_IYUV,    CV_YUV420p2RGB = CV_YUV2RGB_YV12,    CV_YUV420p2BGR = CV_YUV2BGR_YV12,    CV_YUV2RGBA_YV12 = 102,    CV_YUV2BGRA_YV12 = 103,    CV_YUV2RGBA_IYUV = 104,    CV_YUV2BGRA_IYUV = 105,    CV_YUV2RGBA_I420 = CV_YUV2RGBA_IYUV,    CV_YUV2BGRA_I420 = CV_YUV2BGRA_IYUV,    CV_YUV420p2RGBA = CV_YUV2RGBA_YV12,    CV_YUV420p2BGRA = CV_YUV2BGRA_YV12,    CV_YUV2GRAY_420 = 106,    CV_YUV2GRAY_NV21 = CV_YUV2GRAY_420,    CV_YUV2GRAY_NV12 = CV_YUV2GRAY_420,    CV_YUV2GRAY_YV12 = CV_YUV2GRAY_420,    CV_YUV2GRAY_IYUV = CV_YUV2GRAY_420,    CV_YUV2GRAY_I420 = CV_YUV2GRAY_420,    CV_YUV420sp2GRAY = CV_YUV2GRAY_420,    CV_YUV420p2GRAY = CV_YUV2GRAY_420,    //YUV 4:2:2 formats family    CV_YUV2RGB_UYVY = 107,    CV_YUV2BGR_UYVY = 108,    //CV_YUV2RGB_VYUY = 109,    //CV_YUV2BGR_VYUY = 110,    CV_YUV2RGB_Y422 = CV_YUV2RGB_UYVY,    CV_YUV2BGR_Y422 = CV_YUV2BGR_UYVY,    CV_YUV2RGB_UYNV = CV_YUV2RGB_UYVY,    CV_YUV2BGR_UYNV = CV_YUV2BGR_UYVY,    CV_YUV2RGBA_UYVY = 111,    CV_YUV2BGRA_UYVY = 112,    //CV_YUV2RGBA_VYUY = 113,    //CV_YUV2BGRA_VYUY = 114,    CV_YUV2RGBA_Y422 = CV_YUV2RGBA_UYVY,    CV_YUV2BGRA_Y422 = CV_YUV2BGRA_UYVY,    CV_YUV2RGBA_UYNV = CV_YUV2RGBA_UYVY,    CV_YUV2BGRA_UYNV = CV_YUV2BGRA_UYVY,    CV_YUV2RGB_YUY2 = 115,    CV_YUV2BGR_YUY2 = 116,    CV_YUV2RGB_YVYU = 117,    CV_YUV2BGR_YVYU = 118,    CV_YUV2RGB_YUYV = CV_YUV2RGB_YUY2,    CV_YUV2BGR_YUYV = CV_YUV2BGR_YUY2,    CV_YUV2RGB_YUNV = CV_YUV2RGB_YUY2,    CV_YUV2BGR_YUNV = CV_YUV2BGR_YUY2,    CV_YUV2RGBA_YUY2 = 119,    CV_YUV2BGRA_YUY2 = 120,    CV_YUV2RGBA_YVYU = 121,    CV_YUV2BGRA_YVYU = 122,    CV_YUV2RGBA_YUYV = CV_YUV2RGBA_YUY2,    CV_YUV2BGRA_YUYV = CV_YUV2BGRA_YUY2,    CV_YUV2RGBA_YUNV = CV_YUV2RGBA_YUY2,    CV_YUV2BGRA_YUNV = CV_YUV2BGRA_YUY2,    CV_YUV2GRAY_UYVY = 123,    CV_YUV2GRAY_YUY2 = 124,    //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,    CV_YUV2GRAY_Y422 = CV_YUV2GRAY_UYVY,    CV_YUV2GRAY_UYNV = CV_YUV2GRAY_UYVY,    CV_YUV2GRAY_YVYU = CV_YUV2GRAY_YUY2,    CV_YUV2GRAY_YUYV = CV_YUV2GRAY_YUY2,    CV_YUV2GRAY_YUNV = CV_YUV2GRAY_YUY2,    // alpha premultiplication    CV_RGBA2mRGBA = 125,    CV_mRGBA2RGBA = 126,    CV_RGB2YUV_I420 = 127,    CV_BGR2YUV_I420 = 128,    CV_RGB2YUV_IYUV = CV_RGB2YUV_I420,    CV_BGR2YUV_IYUV = CV_BGR2YUV_I420,    CV_RGBA2YUV_I420 = 129,    CV_BGRA2YUV_I420 = 130,    CV_RGBA2YUV_IYUV = CV_RGBA2YUV_I420,    CV_BGRA2YUV_IYUV = CV_BGRA2YUV_I420,    CV_RGB2YUV_YV12  = 131,    CV_BGR2YUV_YV12  = 132,    CV_RGBA2YUV_YV12 = 133,    CV_BGRA2YUV_YV12 = 134,    CV_COLORCVT_MAX  = 135};

■ 第四个参数,int类型的dstCn,dst中的通道数(channel number ),dstCn默认为0,示意 dst中通道数主动从src和code中获取。

示例:

//将彩色图像image1变换为灰度图像gray_image1cvtColor(image1,gray_image1,CV_RGB2GRAY);

综合示例

// VS2010 + OpenCV2.4.9#include<opencv2/core/core.hpp>#include<opencv2/highgui/highgui.hpp>using namespace cv;int main( ){    Mat girl=imread("girl.jpg"); //载入图像到Mat    namedWindow("girl.jpg");     imshow("girl.jpg",girl);    //载入图片    Mat image= imread("11.jpg",199);    //载入后先显示    namedWindow("11.jpg");    imshow("11.jpg",image);    //输入一张jpg图片到工程目录下    imwrite("10.jpg",image);         waitKey();    return 0;}

记得帮我点赞哦!

精心整顿了计算机各个方向的从入门、进阶、实战的视频课程和电子书,依照目录正当分类,总能找到你须要的学习材料,还在等什么?快去关注下载吧!!!

朝思暮想,必有回响,小伙伴们帮我点个赞吧,非常感谢。

我是职场亮哥,YY高级软件工程师、四年工作教训,回绝咸鱼争当龙头的斜杠程序员。

听我说,提高多,程序人生一把梭

如果有幸能帮到你,请帮我点个【赞】,给个关注,如果能顺带评论给个激励,将不胜感激。

职场亮哥文章列表:更多文章

自己所有文章、答复都与版权保护平台有单干,著作权归职场亮哥所有,未经受权,转载必究!