起因

最近口试遇到好几道题目 大抵题意都是某点登程上、下、左、右行走给出不同的条件判断是否能走到起点,个别咱们都会想到DFS/BFS套用模板解决。
然而求走到起点的某个条件,往往会波及的条件的最值,这时候就须要将BFS中的队列-> Queue 替换成优先级队列 PriorityQueue 主动将属性值排序

(上面题解均基于BFS)


题目1

题意: 给定一个地图 长x宽都是n, 还有一个陷入陷阱所需的等待时间 k

  • 有三种标记0、1、# 别离代表 空地、 墙、 陷阱。每次能够抉择上下左右方向进行走, 走空地没处罚, 走陷阱须要期待 k 秒能够持续走,遇到墙则不能走;
  • 从左上点登程,达到右下点,若能达到询问最短时间. 若不能到达右下点则输入"No solution"

  • 通过 PriorityQueue 实现小顶堆 对Node实现按工夫升序,这样队列每次弹出的都是time最小的Node
public class GoTrap {    static class Node implements Comparable {        int x;        int y;        int time;        public Node(int x, int y, int time) {            this.x = x;            this.y = y;            this.time = time;        }        public Node() {        }        @Override                public int compareTo(Object o) {            return this.time - ((Node) o).time;        }    }    static int n;    static int k;    static char[][] map;    static int[][] go = {{0, -1}, {1, 0}, {-1, 0}, {0, 1}};    public static void main(String[] args) {        Scanner sc = new Scanner(System.in);        n = sc.nextint();        k = sc.nextint();        map = new char[n + 1][n + 1];        for (int i = 1; i <= n; i++) {            String str = sc.next();            for (int j = 1; j <= n; j++) {                map[i][j] = str.charAt(j - 1);            }        }        int val = bfs();        if (val == -1) {            System.out.println("No solution");        } else {            System.out.println(val);        }    }    private static int bfs() {        Boolean[][] vis = new Boolean[n + 1][n + 1];        PriorityQueue<Node> queue = new PriorityQueue<>();        queue.offer(new Node(1, 1, 0));        while (!queue.isEmpty()) {            Node node = queue.poll();            if (node.x == n && node.y == n) {                return node.time;            }            for (int i = 0; i < 4; i++) {                int tx = node.x + go[i][0];                int ty = node.y + go[i][1];                if (check(new Node(tx, ty, 0)) && !vis[tx][ty]) {                    if (map[tx][ty] == '0') {                        queue.offer(new Node(tx, ty, node.time + 1));                        vis[tx][ty] = true;                    } else if (map[tx][ty] == '#') {                        queue.offer(new Node(tx, ty, node.time + k + 1));                        vis[tx][ty] = true;                    }                }            }        }        return -1;    }    private static Boolean check(Node node) {        return node.x > 0 && node.x <= n && node.y > 0 && node.y <= n;    }}

题目2

  • 小昆虫在NM的迷宫中,每次能够朝上、下、左、右走一步,只有走出任一边界就算走出迷宫,“@”代表初始地位,“.”代表空地 可通行,“”代表可毁坏的障碍物
  • 从初始地位登程 若能走出输入最小毁坏阻碍数,否则输入-1

  • 同理构建小顶堆,Node按毁坏阻碍数count 升序
public class mg {    static class Node implements Comparator<Node> {        int x;        int y;        int count;        public Node(int x, int y, int count) {            this.x = x;            this.y = y;            this.count = count;        }        public Node() {        }        @Override                public int compare(Node o1, Node o2) {            return o1.count - o2.count;        }    }    static Scanner scanner = new Scanner(System.in);    static int n;    static int m;    static int[][] dir = {{0, -1}, {1, 0}, {-1, 0}, {0, 1}};    static int ex = -1;    static int ey = -1;    static char[][] map;    static int cnt;    public static void main(String[] args) {        int total = scanner.nextint();        while (total-- > 0) {            n = scanner.nextint();            m = scanner.nextint();            map = new char[n][m];            scanner.nextLine();            for (int i = 0; i < n; i++) {                map[i] = scanner.nextLine().toCharArray();                for (int j = 0; j < m; j++) {                    if (map[i][j] == '@') {                        ex = i;                        ey = j;                    }                }            }            int val = bfs(ex, ey);            System.out.println(val);        }    }    static int bfs(int x, int y) {        Boolean[][] visit = new Boolean[n][m];        Queue<Node> queue = new PriorityQueue<>(new Node());        queue.add(new Node(x, y, 0));        Node next = new Node();        while (!queue.isEmpty()) {            Node node = queue.poll();            visit[node.x][node.y] = true;            if (node.x + 1 > n - 1 || node.x - 1 < 0 || node.y + 1 > m - 1 || node.y - 1 < 0) {                return node.count;            }            for (int i = 0; i < 4; i++) {                next.x = node.x + dir[i][0];                next.y = node.y + dir[i][1];                if (!visit[next.x][next.y]) {                    if (map[next.x][next.y]=='*') {                        queue.add(new Node(next.x,next.y,next.count+1));                    } else if (map[next.x][next.y]=='.') {                        queue.add(new Node(next.x,next.y,next.count));                    }                }            }        }        return -1;    }}