1 根本应用

配置logging根本的设置,而后在控制台输入日志,

import logginglogging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')logger = logging.getLogger(__name__) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

运行时,控制台输入,

2016-10-09 19:11:19,434 - __main__ - INFO - Start print log2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail.2016-10-09 19:11:19,434 - __main__ - INFO - Finish

logging中能够抉择很多音讯级别,如debug、info、warning、error以及critical。通过赋予logger或者handler不同的级别,开发者就能够只输入错误信息到特定的记录文件,或者在调试时只记录调试信息。</pre>

例如,咱们将logger的级别改为DEBUG,再察看一下输入后果,</pre>

logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')</pre>

控制台输入,能够发现,输入了debug的信息。

2016-10-09 19:12:08,289 - __main__ - INFO - Start print log2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.2016-10-09 19:12:08,289 - __main__ - INFO - Finish

logging.basicConfig函数各参数:

filename:指定日志文件名;

filemode:和file函数意义雷同,指定日志文件的关上模式,'w'或者'a';

format:指定输入的格局和内容,format能够输入很多有用的信息,

参数:作用 %(levelno)s:打印日志级别的数值%(levelname)s:打印日志级别的名称%(pathname)s:打印以后执行程序的门路,其实就是sys.argv[0]%(filename)s:打印以后执行程序名%(funcName)s:打印日志的以后函数%(lineno)d:打印日志的以后行号%(asctime)s:打印日志的工夫%(thread)d:打印线程ID%(threadName)s:打印线程名称%(process)d:打印过程ID%(message)s:打印日志信息

datefmt:指定工夫格局,同time.strftime();</pre>

level:设置日志级别,默认为logging.WARNNING;</pre>

stream:指定将日志的输入流,能够指定输入到sys.stderr,sys.stdout或者文件,默认输入到sys.stderr,当stream和filename同时指定时,stream被疏忽;</pre>

2 将日志写入到文件

2.2.1 将日志写入到文件</pre>

设置logging,创立一个FileHandler,并对输入音讯的格局进行设置,将其增加到logger,而后将日志写入到指定的文件中,

import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter)logger.addHandler(handler) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

log.txt中日志数据为,

2016-10-09 19:01:13,263 - __main__ - INFO - Start print log2016-10-09 19:01:13,263 - __main__ - WARNING - Something maybe fail.2016-10-09 19:01:13,263 - __main__ - INFO - Finish

2.2 将日志同时输入到屏幕和日志文件</pre>

logger中增加StreamHandler,能够将日志输入到屏幕上,</pre>

import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO) logger.addHandler(handler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

能够在log.txt文件和控制台中看到,

2016-10-09 19:20:46,553 - __main__ - INFO - Start print log2016-10-09 19:20:46,553 - __main__ - WARNING - Something maybe fail.2016-10-09 19:20:46,553 - __main__ - INFO - Finish

能够发现,logging有一个日志解决的主对象,其余解决形式都是通过addHandler增加进去,logging中蕴含的handler次要有如下几种,

handler名称:地位;作用 StreamHandler:logging.StreamHandler;日志输入到流,能够是sys.stderr,sys.stdout或者文件FileHandler:logging.FileHandler;日志输入到文件BaseRotatingHandler:logging.handlers.BaseRotatingHandler;根本的日志回滚形式RotatingHandler:logging.handlers.RotatingHandler;日志回滚形式,反对日志文件最大数量和日志文件回滚TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚形式,在肯定工夫区域内回滚日志文件SocketHandler:logging.handlers.SocketHandler;近程输入日志到TCP/IPsocketsDatagramHandler:logging.handlers.DatagramHandler;近程输入日志到UDP socketsSMTPHandler:logging.handlers.SMTPHandler;近程输入日志到邮件地址SysLogHandler:logging.handlers.SysLogHandler;日志输入到syslogNTEventLogHandler:logging.handlers.NTEventLogHandler;近程输入日志到Windows NT/2000/XP的事件日志MemoryHandler:logging.handlers.MemoryHandler;日志输入到内存中的指定bufferHTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"近程输入到HTTP服务器

2.3 日志回滚</pre>

应用RotatingFileHandler,能够实现日志回滚,</pre>

import loggingfrom logging.handlers import RotatingFileHandlerlogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)#定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1KrHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)rHandler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')rHandler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO)console.setFormatter(formatter) logger.addHandler(rHandler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")logger.info("Finish")

能够在工程目录中看到,备份的日志文件,
</pre>

2016/10/09  19:36               732 log.txt2016/10/09  19:36               967 log.txt.12016/10/09  19:36               985 log.txt.22016/10/09  19:36               976 log.txt.3

2.3 设置音讯的等级

能够设置不同的日志等级,用于管制日志的输入,
</pre>

日志等级:应用范畴 FATAL:致命谬误CRITICAL:特地蹩脚的事件,如内存耗尽、磁盘空间为空,个别很少应用ERROR:产生谬误时,如IO操作失败或者连贯问题WARNING:产生很重要的事件,然而并不是谬误时,如用户登录明码谬误INFO:解决申请或者状态变动等日常事务DEBUG:调试过程中应用DEBUG等级,如算法中每个循环的中间状态

2.4 捕捉traceback

Python中的traceback模块被用于跟踪异样返回信息,能够在logging中记录下traceback,

代码,

import logginglogger = logging.getLogger(__name__)logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO) logger.addHandler(handler)logger.addHandler(console) logger.info("Start print log")logger.debug("Do something")logger.warning("Something maybe fail.")try:    open("sklearn.txt","rb")except (SystemExit,KeyboardInterrupt):    raiseexcept Exception:    logger.error("Faild to open sklearn.txt from logger.error",exc_info = True) logger.info("Finish")

控制台和日志文件log.txt中输入,

Start print logSomething maybe fail.Faild to open sklearn.txt from logger.errorTraceback (most recent call last):  File "G:\zhb7627\Code\Eclipse WorkSpace\PythonTest\test.py", line 23, in <module>    open("sklearn.txt","rb")IOError: [Errno 2] No such file or directory: 'sklearn.txt'Finish

也能够应用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),

logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)

替换为,

logger.exception("Failed to open sklearn.txt from logger.exception")

控制台和日志文件log.txt中输入,

Start print logSomething maybe fail.Failed to open sklearn.txt from logger.exceptionTraceback (most recent call last):  File "G:\zhb7627\Code\Eclipse WorkSpace\PythonTest\test.py", line 23, in <module>    open("sklearn.txt","rb")IOError: [Errno 2] No such file or directory: 'sklearn.txt'Finish

2.5 多模块应用logging

主模块mainModule.py,

import loggingimport subModulelogger = logging.getLogger("mainModule")logger.setLevel(level = logging.INFO)handler = logging.FileHandler("log.txt")handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')handler.setFormatter(formatter) console = logging.StreamHandler()console.setLevel(logging.INFO)console.setFormatter(formatter) logger.addHandler(handler)logger.addHandler(console)  logger.info("creating an instance of subModule.subModuleClass")a = subModule.SubModuleClass()logger.info("calling subModule.subModuleClass.doSomething")a.doSomething()logger.info("done with  subModule.subModuleClass.doSomething")logger.info("calling subModule.some_function")subModule.som_function()logger.info("done with subModule.some_function")

子模块subModule.py,

import logging module_logger = logging.getLogger("mainModule.sub")class SubModuleClass(object):    def __init__(self):        self.logger = logging.getLogger("mainModule.sub.module")        self.logger.info("creating an instance in SubModuleClass")    def doSomething(self):        self.logger.info("do something in SubModule")        a = []        a.append(1)        self.logger.debug("list a = " + str(a))        self.logger.info("finish something in SubModuleClass") def som_function():    module_logger.info("call function some_function")

执行之后,在管制和日志文件log.txt中输入,

2016-10-09 20:25:42,276 - mainModule - INFO - creating an instance of subModule.subModuleClass2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - creating an instance in SubModuleClass2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.subModuleClass.doSomething2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - do something in SubModule2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - finish something in SubModuleClass2016-10-09 20:25:42,279 - mainModule - INFO - done with  subModule.subModuleClass.doSomething2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.some_function2016-10-09 20:25:42,279 - mainModule.sub - INFO - call function some_function2016-10-09 20:25:42,279 - mainModule - INFO - done with subModule.some_function

首先在主模块定义了logger'mainModule',并对它进行了配置,就能够在解释器过程外面的其余中央通过getLogger('mainModule')失去的对象都是一样的,不须要重新配置,能够间接应用。定义的该logger的子logger,都能够共享父logger的定义和配置,所谓的父子logger是通过命名来辨认,任意以'mainModule'结尾的logger都是它的子logger,例如'mainModule.sub'。

理论开发一个application,首先能够通过logging配置文件编写好这个application所对应的配置,能够生成一个根logger,如'PythonAPP',而后在主函数中通过fileConfig加载logging配置,接着在application的其余中央、不同的模块中,能够应用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不须要重复的定义和配置各个模块的logger。

3 通过JSON或者YAML文件配置logging模块

只管能够在Python代码中配置logging,然而这样并不够灵便,最好的办法是应用一个配置文件来配置。在Python 2.7及当前的版本中,能够从字典中加载logging配置,也就意味着能够通过JSON或者YAML文件加载日志的配置。

3.1 通过JSON文件配置

JSON配置文件,

{    "version":1,    "disable_existing_loggers":false,    "formatters":{        "simple":{            "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"        }    },    "handlers":{        "console":{            "class":"logging.StreamHandler",            "level":"DEBUG",            "formatter":"simple",            "stream":"ext://sys.stdout"        },        "info_file_handler":{            "class":"logging.handlers.RotatingFileHandler",            "level":"INFO",            "formatter":"simple",            "filename":"info.log",            "maxBytes":"10485760",            "backupCount":20,            "encoding":"utf8"        },        "error_file_handler":{            "class":"logging.handlers.RotatingFileHandler",            "level":"ERROR",            "formatter":"simple",            "filename":"errors.log",            "maxBytes":10485760,            "backupCount":20,            "encoding":"utf8"        }    },    "loggers":{        "my_module":{            "level":"ERROR",            "handlers":["info_file_handler"],            "propagate":"no"        }    },    "root":{        "level":"INFO",        "handlers":["console","info_file_handler","error_file_handler"]    }}

通过JSON加载配置文件,而后通过logging.dictConfig配置logging,

import jsonimport logging.configimport os def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):    path = default_path    value = os.getenv(env_key,None)    if value:        path = value    if os.path.exists(path):        with open(path,"r") as f:            config = json.load(f)            logging.config.dictConfig(config)    else:        logging.basicConfig(level = default_level) def func():    logging.info("start func")     logging.info("exec func")     logging.info("end func") if __name__ == "__main__":    setup_logging(default_path = "logging.json")    func()

3.2 通过YAML文件配置

通过YAML文件进行配置,比JSON看起来更加简介明了,

version: 1disable_existing_loggers: Falseformatters:        simple:            format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"handlers:    console:            class: logging.StreamHandler            level: DEBUG            formatter: simple            stream: ext://sys.stdout    info_file_handler:            class: logging.handlers.RotatingFileHandler            level: INFO            formatter: simple            filename: info.log            maxBytes: 10485760            backupCount: 20            encoding: utf8    error_file_handler:            class: logging.handlers.RotatingFileHandler            level: ERROR            formatter: simple            filename: errors.log            maxBytes: 10485760            backupCount: 20            encoding: utf8loggers:    my_module:            level: ERROR            handlers: [info_file_handler]            propagate: noroot:    level: INFO    handlers: [console,info_file_handler,error_file_handler]

通过YAML加载配置文件,而后通过logging.dictConfig配置logging

import yamlimport logging.configimport os def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):    path = default_path    value = os.getenv(env_key,None)    if value:        path = value    if os.path.exists(path):        with open(path,"r") as f:            config = yaml.load(f)            logging.config.dictConfig(config)    else:        logging.basicConfig(level = default_level) def func():    logging.info("start func")     logging.info("exec func")     logging.info("end func") if __name__ == "__main__":    setup_logging(default_path = "logging.yaml")    func()

文末福利

点击支付2020Python材料合集,视频&电子书