前两天逛博客的时候看到有集体写了一篇博客说ReentrantLock比synchronized慢,这就很违反我的认知了,具体看了他的博客和测试代码,发现了他测试的不谨严,并在评论中敌对地指出了他的问题,后果他间接把博客给删了 删了 了……
很多老一辈的程序猿对有synchronized有个 性能差 的刻板印象,而后竭力推崇应用java.util.concurrent包中的lock类,如果你诘问他们synchronized和lock实现性能差多少,预计没几个人能答出来。 说到这你是不是也很想晓得我的测试后果? synchronized与ReentrantLock所实现的性能差不多,用处也大幅度重合,索性咱们就来测测这二者的性能差别。
实测后果
测试平台:jdk11, MacBook Pro (13-inch, 2017) , jmh测试
测试代码如下:
public class LockTest {
private static Object lock = new Object();private static ReentrantLock reentrantLock = new ReentrantLock();private static long cnt = 0;@Benchmark@Measurement(iterations = 2)@Threads(10)@Fork(0)@Warmup(iterations = 5, time = 10)public void testWithoutLock(){ doSomething();}@Benchmark@Measurement(iterations = 2)@Threads(10)@Fork(0)@Warmup(iterations = 5, time = 10)public void testReentrantLock(){ reentrantLock.lock(); doSomething(); reentrantLock.unlock();}@Benchmark@Measurement(iterations = 2)@Threads(10)@Fork(0)@Warmup(iterations = 5, time = 10)public void testSynchronized(){ synchronized (lock) { doSomething(); }}private void doSomething() { cnt += 1; if (cnt >= (Long.MAX_VALUE >> 1)) { cnt = 0; }}public static void main(String[] args) { Options options = new OptionsBuilder().include(LockTest.class.getSimpleName()).build(); try { new Runner(options).run(); } catch (Exception e) { } finally { }}
}
Benchmark Mode Cnt Score Error UnitsLockTest.testReentrantLock thrpt 2 32283819.289 ops/sLockTest.testSynchronized thrpt 2 25325244.320 ops/sLockTest.testWithoutLock thrpt 2 641215542.492 ops/s
没错synchronized性能的确更差,但就只差20%左右,第一次测试的时候我也挺惊讶的,晓得synchronized会差,但那种预期中几个数量级的差别却没有呈现。 于是我又把@Threads线程数调大了,减少了多线程之间竞争的可能性,失去了如下的后果。
Benchmark Mode Cnt Score Error UnitsLockTest.testReentrantLock thrpt 2 29464798.051 ops/sLockTest.testSynchronized thrpt 2 22346035.066 ops/sLockTest.testWithoutLock thrpt 2 383047064.795 ops/s
性能差别稍有拉开,但还是在同一量级上。
论断
半信半疑,synchronized的性能的确要比synchronized差个20%-30%,那是不是代码中所有用到synchronized的中央都应该换成lock? 非也,认真想想看,ReentrantLock简直和能够代替任何应用synchronized的场景,而且性能更好,那为什么jdk始终要留着这个关键词呢?而且齐全没有任何想要废除它的想法。
黑格尔说过存在即正当, synchronized因多线程应运而生,它的存在也大幅度简化了Java多线程的开发。没错,它的劣势就是应用简略,你不须要显示去加减锁,相比之下ReentrantLock的应用就繁琐的多了,你加完锁之后还得思考到各种状况下的锁开释,稍不留神就一个bug埋下了。
但ReentrantLock的繁琐之下,它也提供了更简单的api,足以应答更多更简单的需要,具体能够参考我之前的博客ReentrantLock源码解析。
现在synchronized与ReentrantLock二者的性能差别不再是选谁的次要因素,你在做抉择的时候更应该思考的是其易用性、功能性和代码的可维护性…… 二者30%的性能差别决定不了什么,如果你真想优化代码的性能,你应该抉择的是其余的切入点,而不是宽宏大量这个,切记不要拣了芝麻丢了西瓜。
文章本该到这里就完结了,但我依然好奇为什么synchronized给老一辈java程序猿留下了性能差的印象,无奈jdk1.5及之前的材料曾经比拟长远 不太好找,然而jdk1.6对synchronized的性能晋升做了啥还是很好找的。
jdk对synchronized优化了啥?
如果你对代码段加了synchronized的,jvm编译后就会在其前后别离插入monitorenter和monitorexit指令,如下:
void onlyMe(Foo f) { synchronized(f) { doSomething(); }}
编译后:
Method void onlyMe(Foo)0 aload_1 // Push f1 dup // Duplicate it on the stack2 astore_2 // Store duplicate in local variable 23 monitorenter // Enter the monitor associated with f4 aload_0 // Holding the monitor, pass this and...5 invokevirtual #5 // ...call Example.doSomething()V8 aload_2 // Push local variable 2 (f)9 monitorexit // Exit the monitor associated with f10 goto 18 // Complete the method normally13 astore_3 // In case of any throw, end up here14 aload_2 // Push local variable 2 (f)15 monitorexit // Be sure to exit the monitor!16 aload_3 // Push thrown value...17 athrow // ...and rethrow value to the invoker18 return // Return in the normal caseException table:From To Target Type4 10 13 any13 16 13 any
加锁和开释锁的性能耗费其实就体现在了 monitorenter和monitorexit两个指令上了,如果是优化性能,必定也是在这两个指令上优化了。 查阅《Java并发编程的艺术》发现,Java6为了缩小锁获取和开释带来的性能耗费,引入了锁分级的策略。 将锁状态别离分成 无锁、偏差锁、轻量级锁、重量级锁 四个状态,其性能顺次递加。但所幸因为局部性的存在,大多数并发状况下偏差锁或者轻量级锁就能满足咱们的需要,而且锁只有在竞争重大的状况下才会降级,所以大多数状况下synchronized性能也不会太差。
最初我在jdk11u的源码里找到了monitorenter和monitorexit的x86版本的实现(汇编指令和具体平台相干)献给大家,欢送有志之士研读下。
//-----------------------------------------------------------------------------// Synchronization//// Note: monitorenter & exit are symmetric routines; which is reflected// in the assembly code structure as well//// Stack layout://// [expressions ] <--- rsp = expression stack top// ..// [expressions ]// [monitor entry] <--- monitor block top = expression stack bot// ..// [monitor entry]// [frame data ] <--- monitor block bot// ...// [saved rbp ] <--- rbpvoid TemplateTable::monitorenter() { transition(atos, vtos); // check for NULL object __ null_check(rax); const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Label allocated; Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); // initialize entry pointer __ xorl(rmon, rmon); // points to free slot or NULL // find a free slot in the monitor block (result in rmon) { Label entry, loop, exit; __ movptr(rtop, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(rbot, monitor_block_bot); // points to word before bottom // of monitor block __ jmpb(entry); __ bind(loop); // check if current entry is used __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); // if not used then remember entry in rmon __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr // check if current entry is for same object __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); // if same object then stop searching __ jccb(Assembler::equal, exit); // otherwise advance to next entry __ addptr(rtop, entry_size); __ bind(entry); // check if bottom reached __ cmpptr(rtop, rbot); // if not at bottom then check this entry __ jcc(Assembler::notEqual, loop); __ bind(exit); } __ testptr(rmon, rmon); // check if a slot has been found __ jcc(Assembler::notZero, allocated); // if found, continue with that one // allocate one if there's no free slot { Label entry, loop; // 1. compute new pointers // rsp: old expression stack top __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom __ subptr(rsp, entry_size); // move expression stack top __ subptr(rmon, entry_size); // move expression stack bottom __ mov(rtop, rsp); // set start value for copy loop __ movptr(monitor_block_bot, rmon); // set new monitor block bottom __ jmp(entry); // 2. move expression stack contents __ bind(loop); __ movptr(rbot, Address(rtop, entry_size)); // load expression stack // word from old location __ movptr(Address(rtop, 0), rbot); // and store it at new location __ addptr(rtop, wordSize); // advance to next word __ bind(entry); __ cmpptr(rtop, rmon); // check if bottom reached __ jcc(Assembler::notEqual, loop); // if not at bottom then // copy next word } // call run-time routine // rmon: points to monitor entry __ bind(allocated); // Increment bcp to point to the next bytecode, so exception // handling for async. exceptions work correctly. // The object has already been poped from the stack, so the // expression stack looks correct. __ increment(rbcp); // store object __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); __ lock_object(rmon); // check to make sure this monitor doesn't cause stack overflow after locking __ save_bcp(); // in case of exception __ generate_stack_overflow_check(0); // The bcp has already been incremented. Just need to dispatch to // next instruction. __ dispatch_next(vtos);}void TemplateTable::monitorexit() { transition(atos, vtos); // check for NULL object __ null_check(rax); const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); Label found; // find matching slot { Label entry, loop; __ movptr(rtop, monitor_block_top); // points to current entry, // starting with top-most entry __ lea(rbot, monitor_block_bot); // points to word before bottom // of monitor block __ jmpb(entry); __ bind(loop); // check if current entry is for same object __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); // if same object then stop searching __ jcc(Assembler::equal, found); // otherwise advance to next entry __ addptr(rtop, entry_size); __ bind(entry); // check if bottom reached __ cmpptr(rtop, rbot); // if not at bottom then check this entry __ jcc(Assembler::notEqual, loop); }
参考资料
- Java Virtual Machine Specification 3.14. Synchronization
- 《Java并发编程的艺术》 2.2 synchronized的实现原理和利用
本文来自https://blog.csdn.net/xindoo