go-event是一个在Docker我的项目中应用到的一个事件散发组件,实现了惯例的播送,队列等事件散发模型,代码简洁明了,也适宜初学者对Go语言的入门,对channel用来同步,通信也会加深了解。
外围数据结构
Event
type Event interface{}
Event被封装为一个空接口,承受任意类型。在go-events示意一个能够被散发的事件。
interface{}的底层相似于c语言中的void*,但比void*弱小很多,比方interface{}保留了指向对象的指针和类型,而c程序员应用void*时,必须本人去保障对象的类型是正确的)
Sink
type Sink interface { Write(event Event) error Close() error}
Sink是一个用来散发事件(Event)的构造。能够当作事件的解决者,应用接口的形式申明。只有对象实现了这两个办法,就能够被当作一个Sink。
核型办法
Write(event Event) error
- 定义了事件如何被散发的策略。
Close() error
- 当Sink被敞开的解决策略。
go-event外围就是围绕Sink做文章,docker官网给出了一个http的例子,就是当调用Write时,发动一次post申请。:
func (h *httpSink) Write(event Event) error { p, err := json.Marshal(event) if err != nil { return err } body := bytes.NewReader(p) resp, err := h.client.Post(h.url, "application/json", body) if err != nil { return err } defer resp.Body.Close() if resp.Status != 200 { return errors.New("unexpected status") } return nil}// implement (*httpSink).Close()
实现模型
到此为止,sink定义了事件散发的根本单位。在go-event中,封装了播送,音讯队列两种音讯散发的模型,具体来说,就是实现了Sink接口的两个构造体。
Boadcaster
type Broadcaster struct { sinks []Sink //所蕴含的Sink events chan Event// 同步Event的channel adds chan configureRequest //adds和remove必须保障thread-safe,所以采纳channel同步 removes chan configureRequest shutdown chan struct{} closed chan struct{} once sync.Once}
Boardcaster由多个Sink组成,当Boardcaster接管到一个事件时,会调用本身蕴含的所有Sink的Write()办法
go-events设计之初就实现协程之间的音讯散发,须要保障thread-safe,所以对event的解决,增加,移除Sink都应用管道来通信。这也是Go的一个应用准则:
应用通信来共享内存,而不是通过共享内存来通信
在Broadcaster中所有的临界资源(sinks,event)都通过本身的run()函数对立治理,外界则通过相应的channel 同步给Broadcaster
例如Write()
func (b *Broadcaster) Write(event Event) error { select { case b.events <- event: case <-b.closed: return ErrSinkClosed } return nil}
能够看到增减sink都是通过向对应的channel写入数据进行的。
func (b *Broadcaster) Add(sink Sink) error { return b.configure(b.adds, sink) // will be block until ch can be writen}func (b *Broadcaster) configure(ch chan configureRequest, sink Sink) error { response := make(chan error, 1) for { select { case ch <- configureRequest{ sink: sink, response: response}: ch = nil // ? case err := <-response: return err case <-b.closed: return ErrSinkClosed } }}
外围run函数的实现,监听Boardcast管道上的相应事件,并作出解决。
func (b *Broadcaster) run() { defer close(b.closed) //将remove封装了一下,因为上面两处都会用到 remove := func(target Sink) { for i, sink := range b.sinks { if sink == target { b.sinks = append(b.sinks[:i], b.sinks[i+1:]...) break } } } // 轮训解决channel上的事件 for { select { case event := <-b.events: //有事件到来,进行播送 for _, sink := range b.sinks { if err := sink.Write(event); err != nil { if err == ErrSinkClosed { // remove closed sinks remove(sink) continue } logrus.WithField("event", event).WithField("events.sink", sink).WithError(err). Errorf("broadcaster: dropping event") } } case request := <-b.adds: //减少sink事件 // while we have to iterate for add/remove, common iteration for // send is faster against slice. var found bool for _, sink := range b.sinks { if request.sink == sink { found = true break } } if !found { b.sinks = append(b.sinks, request.sink) } // b.sinks[request.sink] = struct{}{} request.response <- nil // 唤醒阻塞的configure()函数 case request := <-b.removes://删除sink事件 remove(request.sink) request.response <- nil case <-b.shutdown: // close all the underlying sinks for _, sink := range b.sinks { if err := sink.Close(); err != nil && err != ErrSinkClosed { logrus.WithField("events.sink", sink).WithError(err). Errorf("broadcaster: closing sink failed") } } return } }}
queue
queue应用contaienr/list实现了典型的生产消费者模型
type Queue struct { dst Sink events *list.List cond *sync.Cond mu sync.Mutex closed bool}
外围函数run(),在队列中取出下一个event,交给本身的sink解决,在没有事件队列的状况下,eq.next()总是阻塞的(应用条件变量进行同步)
func (eq *Queue) run() { for { event := eq.next() if event == nil { return // nil block means event queue is closed. } if err := eq.dst.Write(event); err != nil { logrus.WithFields(logrus.Fields{ "event": event, "sink": eq.dst, }).WithError(err).Debug("eventqueue: dropped event") } }}
生产者:q.next()
消费者:write()
func (eq *Queue) Write(event Event) error { eq.mu.Lock() defer eq.mu.Unlock() if eq.closed { return ErrSinkClosed } eq.events.PushBack(event) eq.cond.Signal() // signal waiters return nil}func (eq *Queue) next() Event { eq.mu.Lock() defer eq.mu.Unlock() for eq.events.Len() < 1 { if eq.closed { eq.cond.Broadcast() return nil } eq.cond.Wait() } front := eq.events.Front() block := front.Value.(Event) eq.events.Remove(front) return block}