首个成功的Promise
从一组Promise里面得到第一个“成功的”结果,同时获得了并发执行的速度和容灾的能力。
Promise.race不满足需求,因为如果有一个Promise reject,结果Promise也会立即reject。
function firstSuccess(promises){ return Promise.all(promises.map(p => { // If a request fails, count that as a resolution so it will keep // waiting for other possible successes. If a request succeeds, // treat it as a rejection so Promise.all immediately bails out. return p.then( val => Promise.reject(val), err => Promise.resolve(err) ); })).then( // If '.all' resolved, we've just got an array of errors. errors => Promise.reject(errors), // If '.all' rejected, we've got the result we wanted. val => Promise.resolve(val) );}
这个方法适合的场景:
- 有多条路可以走,其中任意一条路走通即可,其中有一些路失败也没关系
- 为了加速得到结果,并发地走多条路,避免瀑布式尝试
参考自 https://stackoverflow.com/a/3...
异步reduce
通过瀑布式的异步操作,将一个array reduce成一个值。
(async () => { const data = [1, 2, 3] const result = await data.reduce(async (accumP, current, index) => { // 后面的处理要等待前面完成 const accum = await accumP; const next = await apiCall(accum, current); return next }, 0); console.log(result) // 6 async function apiCall(a, b) { return new Promise((res)=> { setTimeout(()=> {res(a+b);}, 300) }) }})()
对reduce的运用堪称巧妙!
与更常见的【array.map + Promise.all方案】对比:
(async () => { const data = [1, 2, 3] const result = await Promise.all( data.map(async (current, index) => { // 处理是并发的 return apiCall(current) }) ) console.log(result) async function apiCall(a) { return new Promise((res) => { setTimeout(() => { res(a * 2) }, 300) }) }})()
- 两个方案相同点:对每个数组项执行处理,并且其中任一次处理的失败都会造成整体失败
- reduce方案是瀑布式的,map方案是并发的
参考自 https://stackoverflow.com/a/4...