前言

在深度强化学习的实验中,Atari游戏占了很大的地位。现在我们一般使用OpenAI开发的Gym包来进行与环境的交互。本文介绍在Atari游戏的一些常见预处理过程。

该文所涉及到的wrapper均来自OpenAI baselines
https://github.com/openai/gym...

一些常见Wrapper解读

Noop Reset

class NoopResetEnv(gym.Wrapper):    def __init__(self, env, noop_max=30):        """Sample initial states by taking random number of no-ops on reset.        No-op is assumed to be action 0.        """        gym.Wrapper.__init__(self, env)        self.noop_max = noop_max        self.override_num_noops = None        self.noop_action = 0        assert env.unwrapped.get_action_meanings()[0] == 'NOOP'    def reset(self, **kwargs):        """ Do no-op action for a number of steps in [1, noop_max]."""        self.env.reset(**kwargs)        if self.override_num_noops is not None:            noops = self.override_num_noops        else:            noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)        assert noops > 0        obs = None        for _ in range(noops):            obs, _, done, _ = self.env.step(self.noop_action)            if done:                obs = self.env.reset(**kwargs)        return obs    def step(self, ac):        return self.env.step(ac)

该wrapper的作用是在reset环境的时候,使用随机数量的no-op动作(假设其为环境的动作0)来采样初始化状态,如果在中途环境已经返回done了,则重新reset环境。这有利于增加初始画面的随机性,减小陷入过拟合的几率。

Fire Reset

class FireResetEnv(gym.Wrapper):    def __init__(self, env):        """Take action on reset for environments that are fixed until firing."""        gym.Wrapper.__init__(self, env)        assert env.unwrapped.get_action_meanings()[1] == 'FIRE'        assert len(env.unwrapped.get_action_meanings()) >= 3    def reset(self, **kwargs):        self.env.reset(**kwargs)        obs, _, done, _ = self.env.step(1)        if done:            self.env.reset(**kwargs)        obs, _, done, _ = self.env.step(2)        if done:            self.env.reset(**kwargs)        return obs    def step(self, ac):        return self.env.step(ac)

在一些Atari游戏中,有开火键,比如Space Invaders,该wrapper的作用是返回一个选择开火动作后不done的环境状态。

Episodic Life

class EpisodicLifeEnv(gym.Wrapper):    def __init__(self, env):        """Make end-of-life == end-of-episode, but only reset on true game over.        Done by DeepMind for the DQN and co. since it helps value estimation.        """        gym.Wrapper.__init__(self, env)        self.lives = 0        self.was_real_done  = True    def step(self, action):        obs, reward, done, info = self.env.step(action)        self.was_real_done = done        # check current lives, make loss of life terminal,        # then update lives to handle bonus lives        lives = self.env.unwrapped.ale.lives()        if lives < self.lives and lives > 0:            # for Qbert sometimes we stay in lives == 0 condition for a few frames            # so it's important to keep lives > 0, so that we only reset once            # the environment advertises done.            done = True        self.lives = lives        return obs, reward, done, info    def reset(self, **kwargs):        """Reset only when lives are exhausted.        This way all states are still reachable even though lives are episodic,        and the learner need not know about any of this behind-the-scenes.        """        if self.was_real_done:            obs = self.env.reset(**kwargs)        else:            # no-op step to advance from terminal/lost life state            obs, _, _, _ = self.env.step(0)        self.lives = self.env.unwrapped.ale.lives()        return obs

在许多游戏中,玩家操纵的角色有不止一条命,为了加速Agent的训练,使其尽量避免死亡,将每条命死亡后的done设为True,同时使用一个属性self.was_real_done来标记所有生命都用完之后的真正done。

Max adn Skip

class MaxAndSkipEnv(gym.Wrapper):    def __init__(self, env, skip=4):        """Return only every `skip`-th frame"""        gym.Wrapper.__init__(self, env)        # most recent raw observations (for max pooling across time steps)        self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)        self._skip       = skip    def step(self, action):        """Repeat action, sum reward, and max over last observations."""        total_reward = 0.0        done = None        for i in range(self._skip):            obs, reward, done, info = self.env.step(action)            if i == self._skip - 2: self._obs_buffer[0] = obs            if i == self._skip - 1: self._obs_buffer[1] = obs            total_reward += reward            if done:                break        # Note that the observation on the done=True frame        # doesn't matter        max_frame = self._obs_buffer.max(axis=0)        return max_frame, total_reward, done, info    def reset(self, **kwargs):        return self.env.reset(**kwargs)

该Wrapper提供了跳帧操作,即每skip帧返回一次环境状态元组,在跳过的帧里执行相同的动作,将其奖励叠加,并且取最后两帧像素值中的最大值。在Atari游戏中,有些画面是仅在奇数帧出现的,因此要对最后两帧取最大值。

Clip Reward

class ClipRewardEnv(gym.RewardWrapper):    def __init__(self, env):        gym.RewardWrapper.__init__(self, env)    def reward(self, reward):        """Bin reward to {+1, 0, -1} by its sign."""        return np.sign(reward)

对于不同游戏来说,其得分衡量也是不同的,为了便于统一度量和学习,将所有奖励统一定义为1(reward > 0),0(reward = 0)或-1(reward < 0)。

Wrap Frame

class WarpFrame(gym.ObservationWrapper):    def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None):        """        Warp frames to 84x84 as done in the Nature paper and later work.        If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which        observation should be warped.        """        super().__init__(env)        self._width = width        self._height = height        self._grayscale = grayscale        self._key = dict_space_key        if self._grayscale:            num_colors = 1        else:            num_colors = 3        new_space = gym.spaces.Box(            low=0,            high=255,            shape=(self._height, self._width, num_colors),            dtype=np.uint8,        )        if self._key is None:            original_space = self.observation_space            self.observation_space = new_space        else:            original_space = self.observation_space.spaces[self._key]            self.observation_space.spaces[self._key] = new_space        assert original_space.dtype == np.uint8 and len(original_space.shape) == 3    def observation(self, obs):        if self._key is None:            frame = obs        else:            frame = obs[self._key]        if self._grayscale:            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)        frame = cv2.resize(            frame[34:194], (self._width, self._height), interpolation=cv2.INTER_AREA        )        if self._grayscale:            frame = np.expand_dims(frame, -1)        if self._key is None:            obs = frame        else:            obs = obs.copy()            obs[self._key] = frame        return obs

该Wrap对观察到的帧的图片数据进行了处理。首先将3维RGB图像转为灰度图像,之后将其resize为84 × 84的灰度图像。本例为Pong游戏的wrap Frame处理,为使Agent更关注于游戏本身的画面,避免被得分等图像区域误导,我对画面进行了裁切(frame[34: 194]),对于不同的游戏,裁切的方法可能不同。

Frame Stack

class FrameStack(gym.Wrapper):    def __init__(self, env, k):        """Stack k last frames.        Returns lazy array, which is much more memory efficient.        See Also        --------        baselines.common.atari_wrappers.LazyFrames        """        gym.Wrapper.__init__(self, env)        self.k = k        self.frames = deque([], maxlen=k)        shp = env.observation_space.shape        self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)    def reset(self):        ob = self.env.reset()        for _ in range(self.k):            self.frames.append(ob)        return self._get_ob()    def step(self, action):        ob, reward, done, info = self.env.step(action)        self.frames.append(ob)        return self._get_ob(), reward, done, info    def _get_ob(self):        assert len(self.frames) == self.k        return LazyFrames(list(self.frames))

本wrapper的作用是将k帧灰度图像并为一帧,以此来为CNN提供一些序列信息(Human Level control through deep reinforcement learning)。Wrapper会维持一个大小为k的deque,之后依次使用最新的ob来替代最久远的ob,达到不同时间的状态叠加的效果。最后返回一个LazyFrame。如果想要使用LazyFrame,只需利用np.array(lazy_frames_instance)即可将LazyFrame对象转为ndarray对象。

Scaled Float Frame

class ScaledFloatFrame(gym.ObservationWrapper):    def __init__(self, env):        gym.ObservationWrapper.__init__(self, env)        self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)    def observation(self, observation):        # careful! This undoes the memory optimization, use        # with smaller replay buffers only.        return (np.array(observation).astype(np.float32) / 255.0

该Wrapper的目的是将0 ~ 255的图像归一化到 [0, 1]。

后记

在强化学习训练中,环境及其预处理是一个非常重要的步骤,甚至可以直接影响到强化学习智能体的训练成功与否。除上述Wrapper外,读者也可另根据自己的需求来写Wrapper,以满足需求。最后,附上Nature DQN的环境Wrapper:

def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False):    """Configure environment for DeepMind-style Atari.    """    if episode_life:        env = EpisodicLifeEnv(env)    if 'FIRE' in env.unwrapped.get_action_meanings():        env = FireResetEnv(env)    env = WarpFrame(env)    if scale:        env = ScaledFloatFrame(env)    if clip_rewards:        env = ClipRewardEnv(env)    if frame_stack:        env = FrameStack(env, 4)    return env

PS

找了一圈博客网站,CSDN太恶心直接拉黑,博客园又要求实名信息,总感觉不爽,最后选择了SegmentFault。其实最终还是希望能使用自建的博客的,不过一来暂时没有主机,二来最近也没时间折腾GitHub Pages,先在这里记录一下学习笔记好了。就酱。