前言
在深度强化学习的实验中,Atari游戏占了很大的地位。现在我们一般使用OpenAI开发的Gym包来进行与环境的交互。本文介绍在Atari游戏的一些常见预处理过程。
该文所涉及到的wrapper均来自OpenAI baselines
https://github.com/openai/gym...
一些常见Wrapper解读
Noop Reset
class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset(**kwargs) if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac)
该wrapper的作用是在reset环境的时候,使用随机数量的no-op动作(假设其为环境的动作0)来采样初始化状态,如果在中途环境已经返回done了,则重新reset环境。这有利于增加初始画面的随机性,减小陷入过拟合的几率。
Fire Reset
class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac)
在一些Atari游戏中,有开火键,比如Space Invaders,该wrapper的作用是返回一个选择开火动作后不done的环境状态。
Episodic Life
class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs
在许多游戏中,玩家操纵的角色有不止一条命,为了加速Agent的训练,使其尽量避免死亡,将每条命死亡后的done设为True
,同时使用一个属性self.was_real_done
来标记所有生命都用完之后的真正done。
Max adn Skip
class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs)
该Wrapper提供了跳帧操作,即每skip帧返回一次环境状态元组,在跳过的帧里执行相同的动作,将其奖励叠加,并且取最后两帧像素值中的最大值。在Atari游戏中,有些画面是仅在奇数帧出现的,因此要对最后两帧取最大值。
Clip Reward
class ClipRewardEnv(gym.RewardWrapper): def __init__(self, env): gym.RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward)
对于不同游戏来说,其得分衡量也是不同的,为了便于统一度量和学习,将所有奖励统一定义为1(reward > 0),0(reward = 0)或-1(reward < 0)。
Wrap Frame
class WarpFrame(gym.ObservationWrapper): def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None): """ Warp frames to 84x84 as done in the Nature paper and later work. If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which observation should be warped. """ super().__init__(env) self._width = width self._height = height self._grayscale = grayscale self._key = dict_space_key if self._grayscale: num_colors = 1 else: num_colors = 3 new_space = gym.spaces.Box( low=0, high=255, shape=(self._height, self._width, num_colors), dtype=np.uint8, ) if self._key is None: original_space = self.observation_space self.observation_space = new_space else: original_space = self.observation_space.spaces[self._key] self.observation_space.spaces[self._key] = new_space assert original_space.dtype == np.uint8 and len(original_space.shape) == 3 def observation(self, obs): if self._key is None: frame = obs else: frame = obs[self._key] if self._grayscale: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.resize( frame[34:194], (self._width, self._height), interpolation=cv2.INTER_AREA ) if self._grayscale: frame = np.expand_dims(frame, -1) if self._key is None: obs = frame else: obs = obs.copy() obs[self._key] = frame return obs
该Wrap对观察到的帧的图片数据进行了处理。首先将3维RGB图像转为灰度图像,之后将其resize为84 × 84的灰度图像。本例为Pong游戏的wrap Frame处理,为使Agent更关注于游戏本身的画面,避免被得分等图像区域误导,我对画面进行了裁切(frame[34: 194]
),对于不同的游戏,裁切的方法可能不同。
Frame Stack
class FrameStack(gym.Wrapper): def __init__(self, env, k): """Stack k last frames. Returns lazy array, which is much more memory efficient. See Also -------- baselines.common.atari_wrappers.LazyFrames """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames))
本wrapper的作用是将k帧灰度图像并为一帧,以此来为CNN提供一些序列信息(Human Level control through deep reinforcement learning)。Wrapper会维持一个大小为k的deque,之后依次使用最新的ob来替代最久远的ob,达到不同时间的状态叠加的效果。最后返回一个LazyFrame。如果想要使用LazyFrame,只需利用np.array(lazy_frames_instance)
即可将LazyFrame对象转为ndarray对象。
Scaled Float Frame
class ScaledFloatFrame(gym.ObservationWrapper): def __init__(self, env): gym.ObservationWrapper.__init__(self, env) self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32) def observation(self, observation): # careful! This undoes the memory optimization, use # with smaller replay buffers only. return (np.array(observation).astype(np.float32) / 255.0
该Wrapper的目的是将0 ~ 255的图像归一化到 [0, 1]。
后记
在强化学习训练中,环境及其预处理是一个非常重要的步骤,甚至可以直接影响到强化学习智能体的训练成功与否。除上述Wrapper外,读者也可另根据自己的需求来写Wrapper,以满足需求。最后,附上Nature DQN的环境Wrapper:
def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env
PS
找了一圈博客网站,CSDN太恶心直接拉黑,博客园又要求实名信息,总感觉不爽,最后选择了SegmentFault。其实最终还是希望能使用自建的博客的,不过一来暂时没有主机,二来最近也没时间折腾GitHub Pages,先在这里记录一下学习笔记好了。就酱。